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Introduction 

Soon after the publication of Shannon’s (1948) seminal paper 

on information theory, the formalization of entropy and 

efficient coding systems saw applications in a wide range of 

disciplines ranging from biology and economics to 

fundamental physics (Shannon, 1956). In mathematical 

psychology, notions borrowed from information theory were 

successfully applied to pattern perception (Garner, 1962), 

proportion estimation (Attneave, 1953), choice reaction times 

(Hick, 1952), perceptual judgment (Miller, 1956), and data 

analysis (McGill, 1954). Within a couple of decades, 

however, these applications decreased, partially due to 

difficulties in quantifying perceptions of uncertainty and in 

connecting uncertainty with the psychological valence of 

associated outcomes (Luce, 2003). 

In recent years, theories and methods based on the 

information-theoretic notion of uncertainty have re-emerged 

in different areas of cognitive modeling, both in information-

theory-based tools for data processing (e.g., Rissanen, 2007; 

Williams & Beer, 2010) and as assumptions of the goals and 

mechanisms of the human cognitive system (Feldman, 2016, 

and Friston, 2010).  

In studies of decision making under uncertainty, measures 

of entropy have been applied in models of information 

acquisition (Oaksford & Chater, 1994; Crupi et al., 2018; 

Coenen, Nelson, & Gureckis, 2019), neural valuation of 

information (Filimon et al., in press), active learning (Parpart 

et al., 2017), economic choice (Luce, Marley, & Ng, 2009; 

Yang & Qui, 2014), and probability distortion (Zhang, Ren, 

& Maloney, 2019; Akrenius, 2020), whereas approaches 

based on efficient coding have been used to explain 

preference reversals (Summerfield & Tsetsos, 2015), 

decisions by sampling (Bhui & Gershman, 2018), and biased 

number perception (Prat-Carrabin & Woodford, 2020). 

Even though these frameworks differ strongly in their 

domain and theoretical postulates, they share the general 

assumption that a perceived (or neurally coded) reduction in 

uncertainty carries psychological utility, and that this 

reduction can be quantified using information entropy. This 

has inspired theoretical frameworks that aim to describe 

performance in different kinds of choice tasks under a unified 

formal theory (Ortega & Braun, 2013) and has been 

interpreted to suggest that cognitive function and adaptive 

behavior could be governed by a single principle (Friston, 

2010). However, given the diverse array of models that the 

notion of reducing entropy is embedded in, it appears likely 

that this conclusion is too simplified or needs to be refined. 

Goal and Scope 

The purpose of the proposed workshop is to bring together 

cognitive scientists, cognitive psychologists, physicists, 

neuroscientists, economists, philosophers, and computational 

biologists to (1) establish information-theoretic principles 

that extend across tasks and disciplines and can be modeled 

using similar or analogous notions, and (2) diagnose limiting 

cases in which these principles break or carry fundamentally 

different meanings. The invited speakers consist of experts in 

subfields of decision making that relate to the foundational 

processes underlying adaptive and intelligent behavior. 

Structure and Tentative Schedule 
This will be a full day workshop with three sessions of 20-

minute presentations, a 45-minute panel discussion, 5-minute 

flash talks, and opportunities for (virtual) mingling and 

conversation. The full program, along with a platform for 

participants to submit flash talks, will be published on the 

workshop website. 

Morning Session 1: Rationality and Optimal Encoding 

Nick Chater: Overview of the field 

Christopher Summerfield: Optimal irrationality 

Rahul Bhui: Context-dependent preferences and efficient 

neural coding 

Daniel Ortega: Information-theoretic bounded rationality 

models for sensorimotor learning and decision making 

Morning Session 2: Value and Uncertainty 

Laurence Maloney: The value of information: if you want to 

know the subtitle it will cost you $5 

Mikaela Akrenius: Information theory meets expected utility 

Flavia Filimon: Ventral striatum dissociates information 

expectation, reward anticipation, and reward receipt 
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Afternoon Session 1: Evidence and Accuracy 

Eric Schulz: Beyond uncertainty and information bonuses: 

Exploration as fun and empowerment  

Paula Parpart: Active information sampling, information 

gain, and decision heuristics 

Vincenzo Crupi: Towards an accuracy-based approach to 

information search 

Todd Gureckis: Asking the right questions about the 

psychology of human inquiry 

Afternoon Session 2: Panel discussion 

Organizers and Presenters 

Mikaela Akrenius is a PhD student in Cognitive Science at 

Indiana University Bloomington. Her current work focuses on 

the psychological roots of non-expected utility theories and the 

applicability of the notion of entropy in models of risky choice. 

Rahul Bhui is a postdoctoral fellow in Psychology and 

Economics at Harvard University, and incoming Assistant 

Professor at the MIT Sloan School of Management. His research 

combines cognitive science, computational neuroscience, and 

behavioral economics to understand the unifying principles that 

capture both rationality and irrationality. 

Daniel Braun is a Professor at the Institute of Neural 

Information Processing at Ulm University. His background 

spans physics, biology, and philosophy and his current research 

interests lie in the intersection of cognitive modeling, decision 

making and bounded rationality, sensorimotor learning, and 

information processing. 

Nick Chater is Professor of Behavioural Science at Warwick 

Business School. He researches rationality and cognition using 

both experimental and modeling approaches. 

Vincenzo Crupi is a Professor of Philosophy of Science and 

director of the Center for Logic, Language, and Cognition at the 

University of Turin. His interests are in formal epistemology, the 

psychology of reasoning, and medical decision making. 

Flavia Filimon is a cognitive neuroscientist interested in 

perceptual and cognitive decision making and the neural bases 

of the value of information. 

Todd Gureckis is an Associate Professor at the Department of 

Psychology at New York University. His research centers on 

models of memory, learning, and decision making. 

Laurence Maloney is a Professor at New York University. His 

work concerns Bayesian decision theoretic models of 

perception, cognition, and action. 

Jonathan Nelson researches the psychology of uncertainty and 

information in cognition and perception. 

Paula Parpart is a postdoc at the University of Oxford in the 

Human Information Processing Group. Her current research 

focuses on the role of robust decision strategies in human 

cognition and artificial neural networks. 

Eric Schulz leads the Computational Principles of Intelligence 

lab at the Max Planck Institute for Biological Cybernetics. He 

researches learning and decision making from a computational 

and cognitive perspective.  

Christopher Summerfield is a Professor of Cognitive 

Neuroscience at the University of Oxford and Research Scientist 

at Deepmind. His work is concerned with understanding the 

neural and computational mechanisms that underlie human 

perception and cognition. 
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