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Abstract 
The current study tests subjects’ vocal alignment toward female 
and male text-to-speech (TTS) voices presented via three 
systems: Amazon Echo, Nao, and Furhat. These systems vary in 
their physical form, ranging from a cylindrical speaker (Echo), to 
a small robot (Nao), to a human-like robot bust (Furhat). We test 
whether this cline of personification (cylinder < mini robot < 
human-like robot bust) predicts patterns of gender-mediated 
vocal alignment. In addition to comparing multiple systems, this 
study addresses a confound in many prior vocal alignment studies 
by using identical voices across the systems. Results show 
evidence for a cline of personification toward female TTS voices 
by female shadowers (Echo < Nao < Furhat) and a more 
categorical effect of device personification for male TTS voices 
by male shadowers (Echo < Nao, Furhat). These findings are 
discussed in terms of their implications for models of device-
human interaction and theories of computer personification. 
Keywords: vocal alignment; embodiment; human-device 
interaction; gender; text-to-speech   

Introduction 
Recent advancements in robotics and conversational AI has 
led to the development of more human-like robotic systems, 
such as those with expressive facial movements (e.g., Sophia 
by Hanson Robotics) and speech synthesis systems that yield 
hyper-naturalistic voices (e.g., Amazon Echo). The presence 
of and variation across these different systems allows for an 
empirical test of aspects of computer personification theories, 
such as the Computers are Social Actors (CASA) framework 
which proposes that humans apply the social behavior norms 
from human-human interaction to their interactions with 
technology when they detect a cue of humanity in a digital 
system (e.g., Nass, Steuer, and Tauber, 1994). Aspects of 
CASA have received support across many empirical studies, 
such as showing that people apply politeness norms to 
computer interlocutors (Nass et al., 1997). Yet, most studies 

do not directly compare human-computer and human-human 
interaction (e.g., Bell et al., 2003; Nass et al., 1999, 1994). 
Furthermore, no prior studies, to our knowledge, have tested 
the extent to which people’s application of human-based 
social responses might be gradient. The current study was 
designed to fill this gap in the literature by investigating 
whether we see differences in application of social behavior 
from human-human interaction across systems that vary 
gradiently in apparent humanness.  

Given that the main type of interaction with modern voice-
activated artificially intelligent (voice-AI) devices is through 
speech, a relevant social behavior to examine is vocal 
alignment: when speakers adjust their pronunciations of 
words to more closely mirror their interlocutors’ speech 
patterns. Greater degree of alignment has been argued to 
signal social closeness between interlocutors; one theory of 
human-human linguistic coordination is Communication 
Accommodation Theory (CAT) (Giles et al., 1991; Shepard 
et al., 2001): where speakers use degree of convergence to 
convey their closeness to an interlocutor – or, conversely, 
their divergence to signal greater social distance. For 
example, people align more to interlocutors if they find them 
attractive (Babel, 2012) and likeable (Chartrand & Bargh, 
1996).  

Some prior work has explored whether alignment patterns 
differ for non-human interlocutors, comparing human-human 
and human-computer interaction (for a review, see Branigan 
et al., 2010). For example, Branigan and colleagues (2003) 
found that participants aligned in syntactic structure (e.g., 
“give the dog a bone” vs. “give a bone to the dog”) to the 
same extent in typed interactions between an apparent 
‘computer’ and ‘human’ interlocutor. Yet, in spoken 
language interaction, differences by interlocutor appear to be 
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more pronounced: three recent studies found that people 
vocally align to both human and voice-AI assistants (Apple’s 
Siri, Amazon’s Alexa), but display less alignment to the 
assistant voices (Cohn et al., 2019; Raveh et al., 2019; Snyder 
et al., 2019). These findings suggest that our transfer of social 
behaviors to AI systems in speech interactions is tempered by 
their social category as not human. This differentiation of 
speech behavior based on humanness is in line with the 
theory of Audience Design (Bell, 1984; Clark & Murphy, 
1982): whereby interlocutors strategically adapt their 
productions for the communicative needs of their listener. 
Combining aspects of Audience Design and CASA (Nass et 
al., 1997, 1994), we hypothesize that people’s speech 
behavior toward voice-AI will vary gradiently as a function 
of their personification of the system. We predict that people 
will treat more naturalistic systems more like they would a 
real human, while less human-like systems will receive less 
human-based socially-mediated behaviors. 

The present study tests this hypothesis – gradient 
application of social behaviors based on personification – by 
varying the physical embodiment of voice-AI systems. 
Current devices vary in how they embody humanness. For 
example, cylindrical smart speakers are now common 
household voice-AI systems (e.g., Amazon Echo; Google 
Home). Other types of voice-AI systems take on more 
human-like forms. For example, the Nao robot has a head, 
face, and body, but with clear physical and mechanical 
characteristics that make it distinct from a real human (see 
Figure 1). Related work has suggested that the Nao could be 
considered an intermediate type of robot along a cline of 
human-likeness: in a study by Brink and colleagues (2019), 
they found that participants found the Nao less uncanny than 
a more human-like robot face. In the present study, we 
consider a cline of personification from a smart speaker to a 
Nao robot to a Furhat robot (Al Moubayed et al., 2012), 
another type of robot that is more human-like (see Figure 1). 
The Furhat resembles a human bust, with a 3D printed face, 
and a back-projected video of a human face. These videos 
increase its realism: the eyes blink and make micro-
movements, and the mouth shows appropriate articulation of 
speech sounds to match the audio.  

 

 
 
Figure 1: Systems used in the present study (L-R): Amazon 
Echo, Nao, Furhat (male), Furhat (female).  
 
These three devices – a cylindrical speaker, mini-robot, and 
naturalistic bust – vary along a continuum of humanness in 
terms of embodying a human form and displaying human-
like features. Our AI personification hypothesis is that simply 
varying the humanness of the device will lead to changes in 
vocal alignment toward the system. Identical stimuli 

recordings will be presented across systems to avoid any 
confound that might arise from using different voices. In this 
case, we expect an increasing degree of alignment, signaling 
greater application of this human-based, socially-mediated 
behavior, as the personification of the device increases: 
greatest alignment toward the Furhat device, less toward the 
Nao, and least toward the Echo speaker. 

An alternative hypothesis is that increasing personification 
of AI may lead to less alignment – or even divergence – from 
the speech produced by the most human-like system (e.g., 
Furhat) as a consequence of the Uncanny Valley effect (Mori 
et al., 2012): as non-human, robotic entities display greater 
human-like characteristics, there is a tendency for people to 
assess them more positively. Yet, there is a point at which 
there is a steep drop-off and likeability plunges, a function 
known as the ‘uncanny valley’. An example of this is the 
response to seeing a nearly human-like face in a non-human 
device, triggering feelings of disgust or uneasiness. Speakers’ 
patterns of vocal alignment are one way to test the uncanny 
valley; prior work has shown that speakers show more 
convergence toward an interlocutor they feel socially close 
with, while they show divergence from those they want to 
distance themselves from socially. If a human-like voice is 
paired with a hyper-naturalistic robotic entity, this might 
trigger an uncanny valley-like effect, causing participants to 
align less than they would for a real human. 

Gender-mediated alignment toward AI? 
In addition to social factors, such as likeability, human-
human vocal alignment has been shown to be mediated by 
gender. For example, participants show stronger vocal 
alignment toward human male voices than female voices 
(Pardo, 2006). However, this gender effect is sometimes 
mixed (Pardo et al., 2017), suggesting that idiosyncratic 
properties of voices can influence the degree of alignment as 
well. Nevertheless, there is some evidence that gender-
mediated alignment patterns may also transfer to human-
device interaction: humans display greater alignment toward 
male, relative to female, voices for both human and Apple 
Siri model talkers (Cohn et al., 2019; Snyder et al., 2019). 
This supports the hypothesis that humans transfer gender-
mediated patterns of vocal alignment from human-human 
conversations to their interactions with voice-AI systems, 
supporting predictions made by CASA (Nass et al., 1994). 
Yet, the properties of the voices themselves (e.g., 
idiosyncrasies of the human speakers, TTS synthesis) pose a 
confound between apparent human-likeness and degree of 
alignment seen in prior studies. 

Based on our proposal that people’s vocal alignment 
behavior toward AI will vary as a function of the 
personification of the system, we can explore more specific 
predictions by varying the apparent gender of the voice. Prior 
work reports that male voices are imitated to a greater degree 
than female voices, which is realized to a lesser extent for 
TTS voices (Cohn et al., 2019; Snyder et al., 2019). Thus, we 
predict that this gender-mediated pattern will vary gradiently 
as a function of the personification of the AI. More 
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specifically, we predict gender-mediated patterns of 
alignment to be realized to the largest extent for the AI system 
with the most human-like physical features (Furhat) and the 
least amount of gender-mediated alignment patterns for the 
Echo speaker, with the Nao receiving alignment patterns in-
between the others. 

Current Study 
The present study examines 1) the influence of degree of 
human-likeness on extent of vocal alignment toward voice-
AI interlocutors, and 2) how AI personification interacts with 
apparent gender on vocal alignment patterns. We conducted 
a shadowing experiment for identical sound files produced by 
two TTS voices presented across three embodied robotic 
systems: a Furhat (Al Moubayed et al., 2012), a Nao robot 
(SoftBank Robotics), and an Amazon Echo.  In doing so, we 
address a limitation of many vocal alignment studies, where 
comparisons are made across a small subset of different 
model talkers, leading to mixed, and often conflicting 
findings about the influence of gender on alignment in the 
literature (cf. Pardo et al., 2017), allowing us to specifically 
test for the role of system personification, while holding the 
voice characteristics constant across model talkers. 
Furthermore, using these three systems also serves as a 
stronger cue that these are indeed separate interlocutors. The 
current study consists of two experiments: the first is a single 
word shadowing paradigm, where participants were first 
asked to record baseline productions of words and then asked 
to repeat (to shadow) words produced by the systems. 
Experiment 2 is an AXB similarity rating task where a 
separate group of listeners rate the speakers’ baseline and 
shadowed productions from Experiment 1, providing a 
holistic assessment of vocal alignment (cf. Cohn et al., 2019). 

 

Experiment 1. Shadowing 

Methods 
Subjects. Subjects were 10 native English speakers (mean 
age = 35.1 ± 8.5 years old; 5 female, 5 male). Six participants 
reported prior use of one or more voice-AI systems (e.g., 
Amazon’s Alexa, Apple’s Siri, Google Assistant, etc.); four 
reported no prior interaction with any voice-AI system. 
Participants received a $15 Amazon gift card for their time. 
 
Stimuli. Twelve target CVN words were selected for the 
current study, taken from related studies of phonetic 
alignment by talker gender and humanness (Cohn et al., 2019; 
Snyder et al., 2019): bomb, chime, hem, pun, sewn, shone, 
shun, tame, vine, wane, wren, yawn. The 12 target words 
were generated with two Amazon Polly TTS voices (US-
English): a male voice (“Matthew”) and a female voice 
(“Salli”). For the Furhat talkers, two face “textures” were 
selected (male texture: “Marty”, female texture: “Fedora”). 
These faces were selected as they were the most human-like 
available (see Figure 1). For each of the 6 gender/system 
pairings, we generated instructions where each model talker 

introduced themselves with a different gender-matching 
name (e.g., 6 different apparent speakers: “Rebecca”, 
“Matthew”, “Mary”, “Michael”, etc.). 
 
Procedure. Subjects completed the experiment in a semi-
soundproof room with a head-mounted microphone. First, a 
pre-exposure production of the words was recorded from 
each of the subjects in order to get their baseline speech 
patterns prior to exposure to the model talkers. Participants 
produced each of the 12 target words (repeated 2 times), 
reading from a pseudo-randomized list.  

Next, participants completed the word-shadowing portion 
of the study with the Amazon Echo, Nao, and Furhat (order 
counterbalanced across subjects). The same experiment was 
designed on all three systems, using the Amazon Alexa Skills 
Kit, Nao Choregraphe, and Furhat Blockly, respectively. For 
each interlocutor (Echo, Nao, Furhat), subjects completed 
two blocks: a male and female speaker (gender ordering was 
counterbalanced across subjects). For each subject, the voice 
gender ordering (e.g., M-F, M-F, M-F) was consistent across 
the interlocutors; this was to avoid consecutively presenting 
an identical voice for two different interlocutors (e.g., male 
Furhat, male Echo). On a given trial, subjects heard the 
system produce a target word (e.g., “wren”) followed by a 
3000ms silence, providing the subject time to respond. Note 
that the systems’ responses were not contingent on the 
subjects’ productions to avoid ASR errors.  

Finally, subjects completed a short ratings survey about 
each talker (randomly presented). For each, they saw the 
“name” of the talker, a picture of the face/system, and an 
example word recording. Using a sliding scale, they rated 
each voice on four dimensions: age, friendliness (0=not 
friendly, 100=extremely friendly), human-likeness 
(0=machine-like, 100=human-like), and interactiveness 
(0=inert, 100=extremely interactive.) 

Ratings Analysis & Results 
We analyzed participants’ ratings of the talkers with separate 
mixed effects linear regressions, with main effects of Model 
Talker System (a 3-level predictor: Echo, Nao, Furhat) and 
Model Talker Gender (a two-level predictor: Female, Male), 
and their interaction, and by-Subject random intercepts. 
Average ratings for the male and female TTS voices across 
the systems are plotted in Figure 2.  

First, we observe differences of Model Talker Gender for 
age rating: female voices were rated as being younger than 
male voices [β=-7.27, t=-9.13, p<0.001]. Additionally, there 
was a top-down effect of Model Talker System: voices 
presented through the Furhat were rated as being younger 
[β=-4.03, t=-3.58, p<0.001]. Yet, this is driven by an 
interaction between Model Talker Gender and System, where 
the male voice was rated as being younger when presented 
through the Furhat device, compared to when it was 
presented through the other systems [β=-3.27, t=2.90, 
p<0.01]. For friendliness ratings of the voices, the model 
showed only a main effect of Model Talker System: voices 
presented through the Furhat were rated as being friendlier 
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[β=6.53, t=2.97, p<0.01]. For friendliness ratings of the 
voices, the model showed only a main effect of Model Talker 
System: voices presented through the Furhat were rated as 
being friendlier [β=6.53, t=2.97, p<0.01]. For ratings of 
human-likeness and interactiveness of the voices (bottom two 
panels), there were no significant differences by the Model 
Talker System or Model Talker Gender. 
 

 
 
Figure 2: Mean ratings of age, friendliness, human-likeness 
and interactiveness of the TTS voices when presented across 
systems (Echo, Nao, Furhat). Error bars show standard error 
of the mean.  

Experiment 2. AXB Similarity 
 
In this experiment, we assessed global similarity between the 
participants’ baseline productions of the words (produced at 
the beginning of the experiment, prior to exposure to the 
model talkers) and their shadowed productions for each 
model talker from Experiment 1 with an AXB similarity 
ratings task (Cohn et al., 2019).  

Methods 
Subjects. 51 native English speakers participated in the AXB 
study. Subjects were recruited through a university 
Psychology subjects’ pool (37 females, 14 males; mean age 
= 19.9 ± 1.7 years old). All subjects received course credit for 
their participation. 
 
Stimuli. The stimuli consisted of a baseline and shadowed 
production by the 10 speakers who completed Experiment 1. 
For each speaker, we selected one of their pre-exposure and 
shadowed productions of each word for each of the six model 
talkers (i.e., Furhat female, Furhat male, Echo female, etc.). 
Due to speakers’ confusions about the TTS production of 

‘yawn’, and speaker mispronunciations for several other 
words, we only had a full set of pre-exposure and correct 
shadowed productions from each model talker of 8 words for 
the AXB study: bomb, chime, hem, pun, shun, tame, wane, 
wren. 
 
Procedure. Participants completed the AXB similarity 
ratings experiment in a sound-attenuated booth, wearing 
headphones (Seinheiser Pro) and sitting in front of a 
computer screen and button box. On a given trial, raters heard 
three words separated by a short silence (ISI =1s): a speaker’s 
production of a word at baseline (e.g., “A”), the model 
talker’s production of that same word (“X”), and the 
speaker’s shadowed production of that word for that model 
talker (e.g., “B”). Their task was to select the speaker’s token 
that sounded most similar to “X” (i.e., the model talker). 
Order of pre-exposure and shadowed token (i.e., “A” and 
“B”) was balanced within each subject and counterbalanced 
across both system and interlocutor gender. In total, raters 
completed 480 AXB similarity ratings (10 speakers x 8 words 
x 3 systems x 2 genders). Trials were presented in four blocks 
of 120 trials; after each block, subjects could take a short 
break. In total, the experiment lasted roughly 45 minutes. 
 
Analysis. We coded whether the raters selected the shadowed 
token as more “similar” to the model talker (=1) or not (=0) 
and analyzed their responses with a mixed effects logistic 
regression (glmer). Fixed effects included the Model Talker 
System (3 levels: Echo, Nao, Furhat), the Model Talker 
Gender (2 levels: female, male), and the Shadower Gender (2 
levels: female, male), and the interaction between them. 
Random effects structure included by-Shadower random 
intercepts and by-Shadower random slopes for Model Talker 
System, and by-Rater and by-Word random intercepts.  

Results 
The mean AXB similarity ratings for each of the three 
systems and two TTS voices is displayed in Figure 3. Overall, 
the model computed several main effects and interactions. 
First, there was a main effect of Model Talker Gender: 
shadowers showed significantly less alignment to the female 
TTS voice (in orange, Figure 3) than the male TTS voice (in 
blue, Figure 3) [β=-0.01, t=-4.8, p<0.001].  

While there was a trend toward significance for less 
alignment toward the Echo (p=0.054), there was not a main 
effect of Model Talker System. Similarly, there was not a 
main effect of Shadower Gender. However, Model Talker 
System and Model Talker Gender did participate in several 
significant interactions. First, we observed greater alignment 
toward Furhat by female shadowers [β=0.01, t=3.08, 
p<0.001]. Yet, this effect was mediated by a three-way 
interaction: female shadowers imitated the female Furhat 
more [β=0.02, t=4.29, p<0.001] (see Figure 3, left panel).  
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Figure 3: Mean ratings of perceived degree of vocal 
alignment in the AXB similarity ratings task for the three 
systems (Echo, Nao, Furhat) and two TTS voices. Error bars 
show standard error of the mean.  
 
There was also a three-way interaction for the Echo: female 
shadowers showed less alignment toward the Echo with the 
female TTS voice than to the male TTS voice [β=-0.01, t=-
3.03, p<0.001]. The releveled model (ref = Echo) showed 
only a two-way interaction for the Nao: both male and female 
shadowers aligned to the male Nao more than the female Nao 
[β=1.24e-02, t=2.85, p<0.01]. The releveled model for 
gender (ref = female) showed that males aligned to the male 
Furhat more [β=1.92e-02, t=4.39, p<0.001] and to the male 
Echo less [β=-1.32e-02, t=-3.03, p<0.01] (in blue, Figure 3). 
A post-hoc analysis on the data for male shadowers/male 
model talkers confirmed no significant difference for the Nao 
and Furhat, but both showed greater alignment than the Echo 
[β=-2.61e-02, t=-2.96, p<0.01].  

Post-hoc Analysis: Alignment and Ratings 
We additionally conducted post-hoc analyses to test whether 
participants’ ratings of the model talkers (e.g., age, 
friendliness, human-likeness, interactiveness) mediated their 
alignment patterns. The four ratings were included as 
additional independent variables in separate logistic 
regression models run on similarity ratings responses, with 
identical fixed and random effects structure: Model Talker 
System*Model Talker Gender*ShadowerGender*Rating + 
(1 + Model Talker System | Shadower) + (1|Rater) + 
(1|Word). 

Results 
None of the models revealed significant main fixed effects 
for any of the ratings; yet, there were interactions between all 
ratings and Model Talker System. For age, we found an 
interaction with age ratings of the model talkers and degree 
of alignment: participants showed more alignment toward the 

female Echo when they rated the voice as being older 
[β=2.45e-03, t=2.16, p<0.05]. Age ratings did not influence 
alignment patterns toward the Furhat model talkers. The 
releveled model showed that female shadowers displayed 
less alignment toward the female Nao voice as ratings of its 
age increased [β=-1.75e-03 t=-2.04, p<0.05].  

Friendliness also interacted with alignment patterns toward 
particular model talkers: participants showed less alignment 
toward the Furhat talkers when they were rated as being 
friendlier [β=-9.8e-04, t=-2.8, p<0.05] and no effect for the 
Echo talkers. The releveled model showed greater alignment 
toward the Nao voices as they were rated as being friendlier 
[β=6.8e-04, t=2.5, p<0.05].  

For ratings of human-likeness of the system, several 
interactions were computed as significant: first, there was less 
alignment toward the female Furhat if it was rated as being 
more human-like [β=-3.7e-04, t=-2.1, p<0.05]. Additionally, 
the model revealed there was less alignment for female 
shadowers toward the female Echo if it was rated as being 
more human-like [β=6.0e-04, t=-2.6, p<0.001]. The model, 
releveled in order to unpack the comparison with the Nao 
system and the other devices, also revealed that shadowers 
displayed alignment patterns toward the Nao system as a 
function of their human-likeness ratings: there was more 
alignment toward the female Nao if it was rated as being more 
human-like [β=8.0e-04, t=3.4, p<0.0001].  

The model with how interactive-inert the talker was 
revealed just one interaction: shadowers displayed even less 
alignment toward the female Echo with less interactive 
ratings [β=-7.2e-04, t=-3.0 p<0.001]. There was no effect for 
Furhat talkers. The releveled model showed a different 
pattern toward the Nao: shadowers displayed greater 
alignment toward the female Nao with increasing 
interactiveness ratings [β=9.0e-04, t=4.1 p<0.001].  

Discussion 
This study was designed to test whether patterns of vocal 
alignment toward male and female TTS voices are realized 
gradiently, on the basis of the physical form of the device 
producing the speech, varying from very non-human-like (a 
cylindrical speaker) to more human-like (a human-shaped 
bust). In general, participants aligned toward the male TTS 
voices to a greater extent, in line with gender-mediated 
patterns observed in prior work on human and Siri voices 
(e.g., Cohn et al., 2019; Pardo, 2006). That we see 
applications of  this gender-mediated social ‘rule’ from 
human-human interaction to human-AI interaction supports 
predictions made by the CASA framework (Nass et al., 1997, 
1994): participants applied gender-mediated patterns to their 
alignment during interactions with AI systems.  

Additionally, we observed gender asymmetries based on 
both shadower and model talker gender. Female participants, 
in general, displayed greater alignment to the male TTS voice 
across systems. These findings parallel those in the human-
human literature. For example, in a shadowing experiment 
with disembodied voices (and no images), female shadowers 
aligned more to the male talkers, while male shadowers 
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aligned equally toward both male and female voices (Namy 
et al., 2002). We see these patterns borne out in the present 
study for the Amazon Echo responses (females aligning to 
the male TTS voice more; males aligning to both genders 
equally). Yet, when more social cues are available (e.g., in a 
more human-like form: Furhat), we observe that alignment 
may vary based on same- versus mixed-gender 
shadower/model talker pairs. This suggests that the amount 
of social information available and characteristics of the 
participants may shape the degree of alignment more 
generally. 

Furthermore, we found some evidence in support of our 
proposal of AI personification gradience: degree of vocal 
alignment increased as degree of personification of the device 
increased (cylinder < mini-robot < human-like robot) for 
female shadowers toward the female TTS voice. Male 
shadowers also showed evidence that personification of the 
system mediates alignment, but in a more categorical way: 
Male shadowers aligned more toward the male TTS voice 
presented in the Nao and the Furhat, the two more pseudo-
anthropomorphic systems, relative to the Echo. These results 
support our hypothesis, that the degree to which a device 
embodies a human-like form, the more people will apply the 
norms of human-human communication to human-AI dyadic 
interactions: in this case, alignment. This finding supports 
CAT (Giles et al., 1991; Shepard et al., 2001), where speakers 
strategically adapt their degree of convergence toward their 
interlocutor based on their social relationship. Additionally, 
our findings are broadly in line with Audience Design (Bell, 
1984; Clark & Murphy, 1982): speakers adjust their speech 
differently based on the apparent communicative needs of 
their interlocutor (here, based on their physical form as, 
possibly, a cue of more ‘human-like’ competence).  

Our proposal of AI personification gradience also receives 
support from our post-hoc analyses; all four ratings of the 
interlocutors (age, friendliness, human-likeness, and 
interactiveness) interacted with the degree of human 
embodiment of the system to explain vocal alignment 
patterns. For one, increasing human-likeness ratings of the 
Nao system led to increased alignment; in contrast, 
increasing ratings of human-likeness led to decreased degree 
of alignment toward the Furhat device. The reversal of the 
expected pattern of increasing alignment with increasing 
human-likeness, might be interpreted as an ‘uncanny valley’ 
effect (Mori et al., 2012), where increasing human-likeness 
of a non-human entity leads to increasing positive feelings 
toward the entity until a threshold where it elicits feelings of 
discomfort and/or disgust. Some participants may have felt a 
sense of eeriness in seeing a more human-like face realized 
on a device. Age ratings were also linked to patterns of vocal 
alignment: participants aligned more to the Echo if they rated 
the voice as being from an older speaker, but displayed less 
alignment to the Nao if it was rated as being older. This may 
also be related to the uncanny valley effect, where cue 
incongruency drives a sense of uneasiness: the Nao has an 
infant-like form which contrasts with the voice ages (adult 
TTS parameters) (~30s for the female TTS voice, ~40-50s for 

male TTS voice). These observations lead us to refine our AI 
personification hypothesis: people’s application of human-
based behavior norms during speech interaction with voice-
AI will increase as a function of the personification of the 
device, until the AI anthropomorphism reaches realism levels 
that trigger feelings of discomfort. The finding of uncanny 
valley realized in patterns of vocal alignment is novel and 
opens up new ways of exploring and investigating behavioral 
responses to embodied AI.  

There are several limitations of the current study that can 
serve as avenues for future work. For one, differences 
observed for the Furhat faces may have been driven by those 
particular images displayed: future studies using additional 
face textures and having participants rate the attractiveness of 
the faces can tease apart the contribution of this visual social 
information. Previous work has reported a link between 
shadower’s attractiveness ratings of faces and their degree of 
alignment toward that voice (Babel, 2012), further suggesting 
this may have played a role.  

Additionally, while an advantage of an AXB similarity 
rating is that we make no a priori assumptions as to which 
acoustic-phonetic features may be imitated, our overall 
number of shadowers was limited in order to allow for raters 
to make similarity judgments on the full set of stimuli (all 
shadowed tokens, across the three systems; 480 trials, taking 
roughly 45 minutes). While some groups have split AXB 
ratings into separate experiments by groups of speakers, the 
results were less than clear (Pardo et al., 2017). One benefit 
of the current approach is that the patterns are easily 
identifiable and comparable for future work (cf. Cohn et al. 
2019; Snyder et al., 2019).  

Furthermore, one limitation and avenue for future study is 
the number and variety of TTS voices. While using two 
Amazon Polly voices allowed us to address a confound in 
previous work (by using identical voices across the three 
systems during the shadowing experiment), it may have 
affected the ratings that the participants provided (age, 
friendliness, etc.) if they recognized that the same voice was 
used on each system. This was, in part, mitigated by never 
presenting the same voice consecutively. Having the speakers 
shadow a greater variety of TTS voices across different 
systems could lessen this possible effect. 

 Finally, subtle differences in the speaker systems between 
the Echo, Nao, and Furhat may also have contributed to 
differences in perceived human-likeness. Future work using 
computer-mediated methods, such as that presenting videos 
of the three interlocutors, can control more aspects of the 
interaction (e.g., intensity) and be compared to the present 
study to assess the degree to which embodied versus 
computer-mediated interactions may shape vocal alignment. 

Overall, this study provides a first step in exploring the 
nature of AI personification and its relationship with vocal 
alignment, and sets the groundwork for future research.  
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