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Abstract 
Two main classes of theory have been proposed to account for 
insight problem-solving performance; those that invoke the 
overcoming of constraints arising from prior knowledge as the 
source of insight, and those that propose strategic search for 
moves that make progress towards a hypothesized goal state. 
An experiment using matchstick algebra problems assessed the 
contributions of each source. Results indicate that, while prior 
knowledge creates the conditions under which matchstick 
algebra problems are more or less difficult to solve, search for 
moves that make the most apparent progress towards a 
hypothesized goal provides the key to eventual solution.  

Keywords: insight problem-solving; restructuring; prior 
knowledge; strategic search; representational change; progress 
monitoring. 

Introduction 
A seminal paper by Knoblich, Ohlsson, Haider and 

Rheinus (1999) heralded a wave of research into insight 
problem-solving and introduced a new theoretical 
framework, Representational Change Theory (RCT). RCT 
builds upon previous work of Ohlsson (1984 a & b, 1992), in 
which he emphasized the role of the initial problem 
representation in eliciting from memory prior knowledge that 
might prove useful to solution or might be unhelpful, 
resulting in impasse. In the latter case, reaching a solution 
requires re-representation of the problem to activate 
potentially more useful knowledge for solution.   

In RCT, the negative effects of prior knowledge can be 
overcome by constraint relaxation, a process described as 
“one of the mind's responses to persistent failure” (Knoblich 
et al, 1999, p. 1535). The ease with which a constraint of 
knowledge can be relaxed is a function of its scope, that is, 
how much an individual’s mental representation would be 
affected by changing that knowledge, the narrower the scope 
the more likely being its relaxation. In addition to constraint 
relaxation, RCT proposes that the chunks in which prior 
knowledge is organized can restrict the solution of insight 
problems. To solve some problems requires chunk 
decomposition, a process also triggered by persistent failure. 
The ease of chunk decomposition, according to RCT, is a 
function of how ‘tight’ the chunk is bound together, where 
tightness typically relates to perceptual organization (e.g., 
where components are linked together as a single object).  

Knoblich et al tested the predictions of RCT in a series of 
innovative experiments involving matchstick algebra 

problems, in which the task is to correct an arithmetic sum 
shown as Roman numerals made up of individual matchsticks 
by moving only a single matchstick (see Fig. 1 for examples). 
Problems in which the scope of knowledge to be relaxed 
applies widely across mathematics (e.g., the fact that 
formulae typically have an x = F(y) structure rather than the 
tautologous structure required for some solutions, as 
exemplified by problems e and f, Fig.1) were solved less 
often than those where mathematical knowledge applies 
more locally (e.g., changing an operator from division to 
multiplication, as in problems a and b, Fig.1). Similarly, 
problems requiring decomposition of a tight chunk (e.g., 
decomposing a + to make a -, as in problem c, Fig.1) were 
solved less often than those requiring decomposition of a 
loose chunk (e.g., decomposing III to make a II, as in 
problems a and b, Fig.1). 

A number of other studies have confirmed the role that 
scope and tightness of constraints play in mediating problem 
difficulty (e.g., Jones, 2003; Zhang et al., 2015; Öllinger et 
al., 2017), and there seems little doubt that prior knowledge 
is a source of difficulty in solving matchstick algebra 
problems. Otherwise, each match within a problem would 
presumably have a similar probability of selection, 
notwithstanding differences in perceptual salience. What is 
less certain, however, is the mechanism through which 
relaxation and decomposition occur, and also how more 
useful knowledge can become activated so that solutions are 
eventually found. The notion that processes of constraint 
relaxation and decomposition are a natural response to 
persistent failure implies that there is a mechanism for 
switching off unwanted knowledge, at least temporarily, and 
another for discovering and activating more useful 
knowledge. Yet, while repeated failed attempts may act in an 
inhibitory fashion, the current problem representation is 
presumably continually re-activating that inappropriate 
knowledge. Moreover, if inappropriate knowledge is 
somehow switched off to enable solution, presumably there 
needs to be some mechanism that switches it back on again 
once the problem-solving episode is over, otherwise general 
mathematical performance might be impaired. Even if the 
influence of inappropriate knowledge can somehow be 
temporarily suspended, this begs the question as to how the 
right knowledge gets activated in its place. 
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 Low value High value 
Loose chunk a) 

 
Solution:  

b)  
 
Solution: 

Tight chunk c)  
 
Solution:  

d)  
 
Solution:  

Standard tautology e)  
 
Solution:  

f)  
 
Solution:  

Reverse tautology g)  
 
Solution:  

h)  
 
Solution:  

 
Figure 1. Matchstick algebra problems used in the experiments. The solution to each problem must be found by moving 

one match only to make the equation mathematically correct.  
 

 
MacGregor, Ormerod & Chronicle (2001) proposed a 

theory of progress monitoring in insight problem-solving, 
which has subsequently been referred to as Criterion for 
Satisfactory Progress Theory (CSPT – Ormerod & 
MacGregor, 2017). CSPT offers an alternative account of 
difficulty and success in insight problem-solving to that of 
RCT.  In CSPT, the source of difficulty in solving insight 
problems is not the imposition of inappropriate prior 
knowledge, but is instead the selection of move attempts that 
appear to make the most progress towards a hypothesized 
goal, but that do not lie on the solution path. For example, the 
nine-dot problem requires four straight lines to be drawn 
connecting nine dots arranged as a square grid, without 
removing one’s pen from the paper. According to CSPT, the 
problem is hard because individuals can find many ways of 
making satisfactory progress in drawing the first three lines, 
so they fail to consider moves that make less initial progress 
but might allow them to discover the complete solution.  

Insight occurs, according to CSPT, not when constraints of 
prior knowledge are relaxed, but when ‘criterion failure’ 
arises, that is, when no further moves can be discovered that 
meet a criterion of satisfactory progress (in the case of the 
nine-dot problem, the ratio of dots remaining to lines 
available), at which point the problem space is expanded to 
search for novel moves that do meet the criterion for 
satisfactory progress. The role of progress-monitoring in 
insight problem-solving has also been confirmed in other 

studies (e.g., Jones, 2003; Ormerod, MacGregor & 
Chronicle, 2002; Ormerod et al, 2013; Nakano, 2017). 

CSPT has little to offer in explaining the initial difficulty 
of matchstick algebra problems: the scope and tightness of 
chunks of mathematical knowledge act independently of the 
perceived progress towards solution that moving any one 
match might make. However, it does offer a mechanism for 
discovering solutions, and it is one that does not require the 
suspension of knowledge to allow new knowledge to surface.  
Under CSPT, the search for moves in solving a matchstick 
algebra problem is guided by an estimation of the progress 
towards solution that any move might make, that is, the extent 
to which a move is likely to reduce the disparity between the 
sides of the expression. Where a move makes the most 
apparent progress towards solution, it is more likely to be 
selected than moves that make less progress. If this 
maximizing move also coincides with the correct solution, 
the problem will be solved.  

This hypothesis is tested in two experiments reported 
below. The first experiment explores the effects of varying 
the size of the numerical values, to act as a signal for moves 
that make the most progress in reducing the equation 
disparity. This hypothesis is contrasted against a 
manipulation of chunk tightness, which according to RCT 
should determine solution rates. The second experiment 
compares the solution of problems requiring the discovery of 
tautologous expressions, the most difficult class of problem 
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identified by Knoblich et al (1999), with problems presented 
in the form of a reverse tautology that, according to RCT, 
should be easier to solve because the constraint of knowledge 
scope is removed in the latter problems. The experiment also 
examines how manipulating numerical values moderates the 
effects of scope, as predicted by CSPT.  

Experiment 1 
In this experiment, participants attempted to solve 

matchstick algebra problems requiring the construction of a 
new operator to solve. The problems differed according to 
chunk tightness: RCT predicts that problems that require the 
decomposition of the loose chunk ‘III’ to solve (problems a 
and b in Fig. 1) will be solved faster and more often than those 
requiring the decomposition of the tight chunks (the ‘+’ in 
problem c and the ‘[’ representing 100 in problem d in Fig 1). 
A second prediction that follows from RCT is that 
participants’ initial attempts should focus more on matches 
that are loosely chunked (operationalized here as any match 
that is not physically connected to any other, with the 
exception of the division operator, which because of its 
relatively high scope as an operator is counted as a tight 
chunk). CSPT predicts no effect of Chunking. 

Problems also differed according to the numerical value of 
their components. According to CSPT, because the 
difference between numerical values in low value equations 
is relatively small, considering a change to the numbers is 
worthy of exploration, thereby reducing focus on changing 
the operator, which is the move required for solution. In high 
value equations, changing the numbers will not yield 
sufficient progress, increasing the likelihood that they will be 
quickly passed over and the operator will be focused upon. 
Thus, high-value equations should be solved more often than 
low-value equations. A further prediction that follows from 
CSPT is that participants’ initial attempts to solve high-value 
problems should focus more on matches that are part of 
operators or high value numbers (e.g., 50 or 100) than 
matches that are part of low value numbers, with the opposite 
pattern of initial attempts being found with low-value 
problems. As a consequence, value acts in opposition to 
chunking, decreasing selections of matches from loose 
chunks when value is high.  RCT predicts no effect of Value 
on solution rates or on initial attention focus, which should 
always be on number before operator. 

Method 
Participants One hundred and twenty nine adults 
participated on a voluntary basis during a series of 
undergraduate student recruitment open days at the 
University of Sussex. Five participants attempted fewer than 
50 of the pre-test items to identify alphanumeric equivalents 
of Roman numerals, and 3 correctly identified fewer than 
90% of those they attempted. This left 121 participants: 38 
males (mean age = 26.9) and 83 females (mean age = 25.4). 
 
Materials and Design The problems used as task stimuli in 
this experiment are problems a-d as shown in Fig.1. Each 

problem was composed of 14 matches, and was presented 10 
times on a problem sheet to allow repeated attempts to be 
recorded. Participants were assigned to either high-value 
problem or low-value problem groups, and within each of 
those groups were further assigned to loose-chunk or tight-
chunk groups, yielding a fully between-subjects design. 
Dependent variables comprised the frequency of solutions to 
each problem, and the initial attempts of participants 
classified in terms of the frequency of initial attempts 
involving loosely-chunked matches. 
 
Procedure Participants solved the problems individually in 
groups of approximately 30 people during introductory 
Psychology workshops. To reduce the likelihood of 
collusion, participants sitting adjacent to each other were 
assigned to different experimental groups so that their 
problems differed. Participants were each given a booklet 
containing an ethical consent form, a Roman numerals 
training/pre-test, a matchstick algebra problem that varied 
according to experimental group, and a study debrief sheet. 

Following the method of Knoblich et al (1999, Expt. 1a), 
participants received a training phase in which they first read 
a description of the structure and nomenclature of Roman 
numerals. They then received a sheet showing 100 numbers 
of values between 1 and 200 written as Roman numerals, and 
were required to provide the alphanumeric equivalent for as 
many as they could within 5 minutes.  

After the pre-test, participants were then told to attempt the 
matchstick algebra problem. Before commencing to attempt 
the problem, they were told to record their very first solution 
idea, regardless of whether it led to a correct solution or not, 
by circling the match to be moved and then writing down the 
resulting outcome next to the problem statement, and were 
reminded to do so after 30s had elapsed. On completion of a 
5-minute solving period, the booklets were collected, 
solutions to problems were revealed, and participants were 
debriefed as to the purpose of the study. 

 
Results and Discussion 

The frequencies with which participants’ first moves 
involved matches that were loosely or tightly chunked are 
also shown in Table 1. For participants attempting low-value 
problems, solution rates were 77% (23/30) for the loose 
chunk problem and 43% (13/30) for the tight chunk problem. 
For participants attempting high-value problems, solution 
rates were 90% (28/31) for the loose chunk problem and 77% 
(24/31) for the tight chunk problem. A logistic regression 
using Chunking (loose, tight) and Value (low, high) and the 
interaction between these factors as predictors yielded a 
significant model, χ2(3, N = 121) = 21.6, p = .001, with 
Chunking (Wald = 8.12, p =.004), and Value (Wald = 8.65, p 
=.003) significant predictors in the model. The interaction 
between Chunk and Value was not significant in the model. 

The frequencies with which participants’ first moves 
involved matches that were loosely or tightly chunked are 
also shown in Table 1. A logistic regression using Chunking, 
Value, and the interaction between these factors as predictors 
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on the yielded a significant model, χ2(3, N = 121) = 15.03, p 
= .002, with Value (Wald = 8.86, p =.003) and Chunking 
(Wald = 4.71, p =.030) significant predictors in the model.  
The interaction between Chunking and Value (Wald = .666, 
p =.414) was not significant in the model. 
 

Table 1. Solution frequencies and ‘loose chunk’ first 
move selections in Experiment 1 (%s in brackets) 

 
 Low value High value 
 No. 

Correct 
1st move 

loose  
No. 

Correct 
1st move 

loose  
Loose 
chunk 

23/30 
(77) 

28/30 
(93) 

28/31 
(90) 

21/31 
(63) 

Tight 
chunk 

11/29 
(40) 

22/29 
(76) 

24/31 
(77) 

16/31 
(52) 

 
The results confirm the prediction derived from RCT that 

chunk tightness determines difficulty of these matchstick 
algebra problems, with more solutions for the loose-chunk 
than the tight-chunk problem.  The first move data partially 
confirm this finding: with low-value problems, participants’ 
initial attempts focused upon loosely chunked matches. 
However, the results also confirm the prediction derived from 
CSPT: Participants were more likely to solve high-value 
problems. Moreover, the value of equations also influenced 
the selection of first moves, with fewer loose-chunk first 
moves chosen for the high-value problem. Thus, it appears 
that a large disparity in values on each side of the equation 
serves as a cue to seeking moves that maximize the reduction 
of this difference, and this effect of value ameliorates to some 
extent the effects of chunk tightness. 

 Experiment 2 
The results of Experiment 1 indicate roles for both prior 

knowledge and progress monitoring in the relative difficulty 
of different matchstick algebra problems. However, the 
experiment examined only a limited number of relatively 
simple problems. Moreover, the two ‘tight chunk’ problems 
differed in terms of the nature of chunk to be decomposed, 
the low-value problem requiring decomposition of the 
operator ‘+’, the high-value problem requiring 
decomposition of the numeral ‘[’. This difference introduced 
a confound, since the scope of an operator is greater than that 
of a numeral, so RCT would predict it would be more difficult 
to decompose the former than the latter. Thus, the 
hypothesized effects require a further test. 

In the second experiment, some participants attempted to 
solve a matchstick algebra problem requiring a tautologous 
expression for solution (problems e and f in Fig.1), the 
hardest type explored by Knoblich et al. Others attempted 
‘reverse’ tautologies, in which the tautologous expression 
was presented as the problem statement (problems g and h in 
Fig.1). The prediction that follows from RCT is that reverse 
tautology problems ought to be solved more readily than 
standard tautology problems, since the constraint imposed by 
prior knowledge of typical mathematical functions is undone 

by the presentation of the tautology itself. CSPT offers no 
prediction regarding the effect of Tautology. 

As in Experiment 1, problems also varied in terms of the 
numerical value of their components. Again, according to 
CSPT, high values in equations signal move attempts that 
make greater progress in reducing disparities. Thus, high-
value equations should be solved more often than low-value 
equations. Again, RCT offers no predictions regarding the 
effect of Value. In Experiment 2, no analysis of first moves 
was made, since chunk tightness was not manipulated 
systematically (e.g., there are no tight chunks apart from the 
operators in equation e, compared with equation h, which 
consists only of tight chunks).  

Method 
Participants A different sample of 144 adults participated on 
a voluntary basis during a series of undergraduate student 
recruitment open days at the University of Sussex. Seven 
participants attempted fewer than 50 of the pre-test items to 
identify alphanumeric equivalents of Roman numerals, and 4 
correctly identified fewer than 90% of those they attempted, 
and these were excluded from the sample.  This left 133 
participants: 47 males (mean age = 26.3) and 86 females 
(mean age = 25.5). 
 
Materials and Design The problems used as task stimuli in 
this experiment are problems e-h as shown in Fig.1. Each 
standard tautology problem comprised 10 matches and each 
reverse tautology problem comprised 11 matches. 
Presentation of the study materials to participants was as in 
Experiment 1. 
 
Procedure The procedure was identical to that of the first 
experiment. 

 
Results and Discussion 

For participants attempting standard tautology problems, 
solution rates were 12% (4/32) for the low-value problem and 
62% (21/34) for the high-value problem. For participants 
attempting the reverse tautology problems, solution rates 
were 72% (23/32) for the low-value problem and 77% 
(28/35) for the high-value problem.  A logistic regression 
using Tautology (standard, reverse) and Value (low, high) 
and the interaction between these factors as predictors 
yielded a significant model, χ2(3, N = 133) = 39.30, p < .001, 
with Tautology (Wald = 19.33, p < .001), Value (Wald = 
11.12, p =.001), and the interaction between Tautology and 
Value (Wald = 5.26, p =.022) all significant predictors in the 
model. 

The results again provide support for RCT, in this case 
showing the effects of scope of mathematical knowledge on 
problem difficulty: As predicted, the standard tautology 
problems were solved considerably less frequently than the 
reverse tautology problems.  However, again this effect was 
moderated by the value of numbers in the equation. In the 
case of the standard tautology, solution frequencies 
approached those of the reverse tautology problems. It 
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appears that, with standard tautology problems, participants 
sought to overcome the debilitating effects of scope by 
searching for solution ideas prompted by moves that would 
make the greatest change in value.  In equation f (Fig. 1), the 
numeral LI (51) is clearly the main source of the equation 
disparity, and so participants are orientated towards changing 
this value, a move that happens to lie on the solution path. In 
equation e (Fig. 1), there is little to differentiate the loose 
chunks of matches contained in the IIs and the III, so 
participants receive little or no hint from the problem itself as 
to what moves might make most progress. In the case of the 
reverse tautologies (g and h, Fig. 1), in both instances the 
relative values are the same (both having a structure 2x = x= 
x), and so the number values do not give a clear hint to which 
match to move, hence the similarity in solution rates for these 
problems.  

General Discussion 
In two experiments that employed matchstick algebra 

problems as insight puzzle stimuli, the relative impacts of 
manipulating constraints of prior knowledge and of perceived 
progress towards solution were manipulated, as tests of 
Knoblich et al’s (1999) Representational Change Theory 
(RCT) and MacGregor et al’s (2001) Criterion for 
Satisfactory Progress Theory (CSPT), respectively.  

In Experiment 1, the constraint of prior knowledge that 
arises from the tightness with which chunks of knowledge are 
bound was examined. Results show that problems requiring 
the decomposition of tight chunks (e.g., operators) are more 
difficult than those requiring decomposition of loose chunks 
(e.g., II and III). This result is consistent with the predictions 
of RCT, and is confirmed by the main effect of Chunking 
found with first move selections. However, the effect of 
chunk tightness was all but eradicated by manipulating the 
numerical value of the presented expression. Large values 
orientated participants to seek moves that might offer the 
greatest reduction in disparity between the two sides of the 
equation, thereby providing a cue to a matchstick move that 
lay on the solution path. This result is confirmed in the first 
move data: With high-value problems, participants were 
more likely to select first moves from tightly chunked 
problem elements if they signaled a large value change.  

In Experiment 2, the constraint of prior knowledge that 
arises from the scope with which mathematical knowledge 
applies was examined. Participants found the reverse 
tautology problems considerably easier to solve than the 
standard tautology problems, again a result predicted by 
RCT. It appears that participants do not have ready access to 
the concept that a mathematical expression can be correct 
while being tautologous. However, solution rates for the 
standard tautology problem which contained a high-value 
disparity were much higher, approaching those of the reverse 
tautologies. Again, it appears that the presence of a number 
that causes a large value disparity acts as a cue for 
participants to select a move that lies on the solution path.  

Our contention is, then, that although prior knowledge 
undoubtedly creates the conditions under which matchstick 

algebra problems vary in difficulty, there is no need to 
propose the relaxation of prior knowledge to explain eventual 
solution. Instead, we argue, when participants enter a state of 
impasse, they begin a search for alternative moves that have 
not been considered before. Given that the problems used 
here contain between 10 and 14 matches that might be 
moved, this search is non-trivial, since each moved match can 
have many potential resting places. We propose that 
participants narrow the search by seeking to test moves that 
make the most apparent progress towards solution. In the 
experiments reported here, we believe participants solved 
when they did, not because they were able to ‘switch off’ 
erroneous knowledge and thereby access more useful 
knowledge, but because they picked up on cues to progress 
that happened to lie on the solution path.   

In some respects, the search process of CSPT has 
similarities with the concept of ‘detecting invariants' 
proposed by Kaplan & Simon (1990), in which they suggest 
that individuals search for problem features that do or do not 
vary, and use this search to provide cues for move attempts. 
Where the accounts differ, however, is that invariant 
detection examines only the idea generation component, 
whereas CSPT explains both sources of difficulty and 
eventual solution. In CSPT, it is cues to progress that provide 
both the source of difficulty, as participants select moves that 
seem to make progress but that do not lie on the solution path, 
and also the source of solution ideas, as participants respond 
to impasse by searching for novel moves that still seem to 
make progress.  

Perhaps the most important aspect of the current findings 
is that, for the first time, a process for achieving insight is 
proposed in which the concept of constraint relaxation is 
rendered unnecessary. It may be possible for proponents of 
RCT and similar knowledge-based accounts to develop an 
implemented model that combines spreading activation and 
inhibition processes in a neurally plausible way to model 
contemporaneous activation and de-activation of 
mathematical knowledge (see Ohlsson, 2011, for a partial 
specification of such a model).  We suggest, however, that an 
account which has no need for relaxation of prior knowledge 
to discover solutions will benefit from greater parsimony. In 
our view, the mind’s ‘response to persistent failure’ is not to 
try to forget what it knows; it is to try to find something better. 
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