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Abstract

How do neural network models of quasiregular domains learn
to represent knowledge that varies in its consistency with
the domain, and generalize this knowledge appropriately?
Recent work focusing on spelling-to-sound correspondences
in English proposes that a graded “warping” mechanism
determines the extent to which the pronunciation of a newly
learned word should generalize to its orthographic neighbors.
We explored the micro-structure of this proposal by training a
network to pronounce new made-up words that were consistent
with the dominant pronunciation (regulars), were comprised
of a completely unfamiliar pronunciation (exceptions), or
were consistent with a subordinate pronunciation in English
(ambiguous). Crucially, by training the same spelling-to-sound
mapping with either one or multiple items, we tested whether
variation in adjacent, within-item context made a given
pronunciation more able to generalize. This is exactly what
we found. Context variability, therefore, appears to act as a
modulator of the warping in quasiregular domains.
Keywords: quasiregularity, neural network models, context
variability, read aloud, spelling-to-sound correspondences,
reading acquisition.

Introduction
In many domains, typically referred to as ”quasiregular”
domains, knowledge acquisition often entails learning about
typical patterns and regularities alongside exceptions and
violations. For instance, birds typically have wings and can
fly. However, bats, which do have wings and can fly, are not
birds. Meanwhile, penguins, which cannot fly, are still birds
(Rogers & McClelland, 2004). Similarly, in the domain of
learning the tenses of English verbs, the past tense can usually
be guessed correctly by adding -ed to the present tense of
the verb, as in walk-ed and talk-ed. However, violations of
consistency must also be learned, such as the past tense of go
being went, not go-ed (Seidenberg & Plaut, 2014).

The same kind of tension between regular patterns
and exceptions characterizes the reading system of many
languages, including English, in which relationships between
spelling and sound are quite opaque. Learning how to
translate spelling into sound requires that regularities, such

as the English “i” typically pronounced in mint, hint, or tint,
be able to coexist alongside exceptions, such as the “i” of pint
being pronounced as in eye. Learning regularities leads to an
efficient representation of knowledge, as storing a repeated
pattern means that it can be applied to most instances,
including new ones. In the illustration above, generalizing
the typical pronunciation to the plausible novel word kint, for
example, would in all likelihood produce a correct response.
However, stimuli that violate the prototypical pattern should
not be allowed to generalize, and this needs to be learned
as well. How a computational model should deal with
these two competing pressures—to generalize and not to
generalize—has been a challenge for any account of how the
brain’s architecture learns to represent quasiregular domains.

One class of accounts that attempts to address these
competing pressures are “rules-and-exceptions” models,
which assume that rules and exceptions are coded by distinct
pathways characterized by specific computation abilities and
underlying neuro-anatomical substrates. In the domain
of reading aloud, the Dual Route Cascaded model (DRC;
Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), as well
as closely related models, such as CDP++ (Zorzi, Houghton,
& Butterworth, 1998), have one route via which the most
typical pronunciation can be retrieved and applied to most
words as well as novel, unknown words. These models,
therefore, must also have another separate route in order
to code exceptions and ensure that these do not generalize.
This type of account is appealing to psychologists due to its
high-level theoretical transparency.

However, the limitations of this type of account become
more prominent as soon as one tries to understand what
makes a given word an exception to the rule. In particular,
not all exceptions to the rules are equal, and some may be
more extreme than others. For example, the pronunciation
of “i” in pint may not be shared by any other rhyming word.
In other rhyme neighbourhoods, however, the pronunciation
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of “i” is more ambiguous and it is less clear which case is the
exception to the rule, as in give and live versus hive, and drive.
Thus, addressing the full quasiregularity continuum is more
challenging for such dual route accounts, often involving
assumptions about the speed and probability of completing
processing via one route or the other under race conditions.

To address this challenge, a competing class of accounts,
often exemplified by neural network models, has been
developed. These models rely upon a single set of
simple neuro-biologically inspired learning, processing, and
representation principles that allow for information to be
summated, nonlinearly transformed, and transmitted between
“units” that are akin to neurons. However, despite the
simplicity of the underlying mechanisms, these models can
learn internal connectivity structures that encode the diversity
of cases encountered on a quasiregular continuum, such as
English spelling-to-sound mappings (e.g., Plaut, McClelland,
Seidenberg, & Patterson, 1996; McClelland, 2015).

Work by Kim, Pitt, and Myung (2013) has shed light
onto exactly how these neural networks accomplish this
feat through representational warping, as illustrated in
Figure 1. Warping is a hypothesized mechanism underlying
quasiregularity that can be understood as a simplified
two-dimensional schematic of the high-dimensional mapping
between spelling and sound in the trained network. The
representational space is relatively flat (minimally warped),
so that consistent pronunciations can easily generalize to
neighbouring areas (e.g. the “i” in mint, lint). Encoding
a word that violates this consistency will entail warping a
local area of the representational space where a different
spelling-sound mapping can apply (e.g., the “i” in pint).
Warped representations should minimally bleed out to impact
neighbouring areas of the space, including to regions where
newly-learned words (and nonwords) would be represented.
However, the more exemplars that follow an atypical
pronunciation (i.e., the more ambiguous the string is in terms
of its pronunciation), the wider the area occupied by the
alternate pronunciation and the shallower the slope. On that
basis, neighboring strings are more likely to slip into that area
and adopt the alternate pronunciation, thereby increasing the
likelihood of generalizing ambiguous pronunciations.

These core tenets of representational warping have
received direct empirical support through a series of
coordinated neural network simulations and behavioural
investigations (Armstrong, Dumay, Kim, & Pitt, 2017).
Simulations and college-aged human participants were
assessed on how well they learned and generalized the
pronunciation of new words that were either consistent or
inconsistent with their prior knowledge (that is, regular
or exceptional), or somewhere in between (ambiguous).
The behavioural results paralleled those of the simulations,
showing differential rates of pronunciation generalization of
new words even though these words had been learned equally
well.

Figure 1: Warped space enabling the representation of the
pronunciation of exception word pint with minimal spill-over
to neighbouring words (lint, mint) and nonwords (fint, rint).

Present Aims
Although promising, the initial studies of warping leave
much unanswered about exactly which properties of a word
drive the formation of warped representations, and how
warping could be modulated to impact generalization while
preserving the learnability of items. To advance this line
of reasoning, the current work looks at context variability,
which has previously been shown to promote learning of the
input structure (e.g., Lively, Logan, & Pisoni, 1993; Rost &
McMurray, 2009). Any dimension (even across modalities)
that covaries with the target domain can in theory assist with
its partitioning into meaningful perceptual categories (e.g.,
Thiessen, 2007). Previous work in non-linguistic domains
has established that context variability can enhance learning
of initial items as well as generalization to novel items (e.g.,
Finch, Carvalho, & Goldstone, 2016). Therefore, the aim of
the simulations we report herein is to identify how context
variability—the number of words that share a rhyming
pronunciation—could impact warping and generalization.

The interaction between context variability and warping is
especially important because it allows an exploration of the
micro-structure of representational warping. For example,
learning a new exception word such as suff, rhyming with
roof not cuff, should generate maximal warping. However, if
instead, two new exception words sharing that rhyming word
are learned, such as chuff and vuff, this “exception” should
be slightly less exceptional, thereby requiring less warping
to store both exceptions, ultimately increasing generalization
for this new pronunciation. This should be true even when
holding the total frequency of each rhyme mapping constant,
such as by presenting the pair of exceptions at half the
frequency as the single exception.

Taken together, the results of the current simulations
will further our understanding of the warping mechanism,
contributing to an explicit mechanistic understanding of
how and why context variability modulates learning and
generalization in a number of experimental studies, without
recourse to qualitatively distinct representations of “rules”
versus “exceptions.”
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Neural Network Simulation
We explored how the number of examples of a new
pronunciation that varied in its consistency with prior
knowledge impacted the ease of learning the new
pronunciation, and how well this pronunciation generalized
to previously unseen nonword neighbors in the surrounding
representational space.

As in Armstrong, Dumay, et al. (2017), we extended
a popular connectionist model of reading English words
aloud (Plaut et al., 1996). First, we trained this model
on a base vocabulary of English, and then introduced new
items that varied in their consistencies with the established
spelling-sound regularities. The task of reading aloud in
English is particularly well-suited for the present purpose
because of its quasiregularity: most words follow common
sets of regularities to determine how spelling maps to
sound—but there are also some exceptions.

Once the model was trained, we then introduced
new regular, ambiguous, and exception words into the
vocabulary, which we refer to as anchors. Holding rhyme
frequency constant, we manipulated context variability by
varying whether there was one, two, or three new words
that contained each new pronunciation—we refer to this
manipulation as dilution.

Finally, we examined how well these new words were
learned and the degree to which their representations
generalized to neighbouring nonword probes. Nonwords are
an ideal test of generalization because unlike neighbouring
words, which may have been explicitly trained to some
particular pronunciation, nonwords have not been explicitly
represented, and their performance is determined by how the
pronunciation of known words is extended to them.

At a macro-structural level, we predicted that when all
three anchor types were equally well-learned, there should
be substantial generalization of the ambiguous anchors
to their corresponding probes, and minimal generalization
of the exception anchors. This is because learning the
exceptions will entail more warping than learning the
ambiguous anchors. As we dilute each pronunciation,
this macro-structural prediction should be recapitulated
at a micro-structural level: having three words sharing
an exceptional (or ambiguous) rhyme should make that
pronunciation less exceptional, thereby leading to reduced
warping and more generalization of the new pronunciation.
Regular words serve as a basic control condition in all cases;
they should already be pronounced correctly even before
training via generalization of existing pronunciations, as
should regular probes.

Methods
Architecture
The architecture of the model is presented in Figure 2.
The model consists of an input layer coding for a word’s
orthography, which feeds forward to an intermediate hidden
layer, which in turn feeds into the phonology output layer.

Figure 2: Model architecture. An example word, MAKE,
is presented to the orthographic layer. The corresponding
pronunciation, /mAk/, is produced by the phonology layer.

Both the input and output layers use a slot-based coding to
denote the position of elements in a word, thereby enabling
the representation of the spelling and sound of monosyllabic
English words. A sequence of slots in the orthographic layer
codes for each grapheme in a word, in sequence. Similarly,
a sequence of slots in the phonological layer codes for the
onset, vowel, and coda of words (e.g., the “h”, “i” and “nt” in
hint).

Representations
Base Vocabulary The training corpus consisted of 2998
monosyllabic words, representing the bulk of common
English monosyllabic words. Their written word frequencies
were also used during training to make the simulations
more realistic given the importance of frequency effects in
language processing. For consistency with prior simulations,
we used the frequency data from Kučera and Francis (1967).

New Word Anchors After training on the baseline
vocabulary, the model learned three sets of new anchors:

1. Regular anchors, whose pronunciation was consistent with
the regularities in the baseline vocabulary (e.g., bint,
rhyming with mint, hint, tint).

2. Exception anchors, whose pronunciation was inconsistent
with the regularities in the baseline vocabulary (e.g., suff,
rhyming with roof, not cuff ).

3. Ambiguous anchors, whose pronunciation was consistent
with a subordinate pronunciation, but not the dominant
regularity, in the baseline vocabulary (e.g., bive, rhyming
with give, live, not drive, hive).

Each set consisted of ten triplets, with each triplet coding
for three words sharing the same rhyme (vowel + coda), using
the stimuli in Armstrong, Dumay, et al. (2017) as the basis
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for the first word in each triplet. For example, one exception
triplet consisted of {suff, chuff, vuff}.

To study the effects of diluting the exposure to each word
(onset + vowel + coda) while holding the frequency of the
rhymes (vowel + coda) in each triplet constant, we created
three dilution sets presenting either the first anchor in a triplet,
the first and second anchors in a triplet, or the entire triplet.
The summed word frequency of each pronunciation was held
constant using a dilution scaling factor, such that the word
frequency of presenting a single anchor in a triplet would
be scaled by 1, presenting two anchors in a triplet would
be scaled by 1/2, and presenting all three anchors would be
scaled by 1/3. We refer to each of these sets as the the low,
moderate, and high dilution sets, respectively. We trained
models using two different orderings of the triplets to test
the robustness of the model’s performance to the effects of
dilution. The results were highly similar, so for brevity we
report the average results across orderings.

To address other key psycholinguistic properties that can
behaviourally modulate the naming aloud task, we also
matched the words on several other properties—to the extent
possible given the constraints of English—including length in
letters, length in phonemes, and orthographic neighbourhood
size.

Probes (nonwords to test generalization)
Probes consisted of four rhyme neighbours for each of the
anchor triplets (e.g., vlit as a probe for anchor blit, rhyming
with slit). Put differently, the probes and their corresponding
anchors all share the same rhyme. The only difference
between these two types of stimuli is that the model learned
to read the anchors through supervised learning, whereas the
model never learned (i.e., never had its weights adjusted)
based on exposure to the probes. Thus, the probes reflect a
test of the generalization of the pronunciation learned from
the anchors to these novel (nonword) items.

Training
Model Initialization
Prior to training, the weights in the simulation were
instantiated to small random values in proportion to N, the
number of weights between layers, as (mean = 0, range = ±
1/
√

N). All bias values were initially set to −1.85, which
reduced the mean activity in the hidden and output units and
facilitated the learning of the sparse output patterns. To gain
insight into the systematicity of the results, two variants of
each set of random weights were run, each using a different
random seed to initialize the weights. The results of each
individual simulation were very similar, so we report the
average across the simulations.

Base Vocabulary For the first 350 epochs, the model was
trained on the base vocabulary only. Weight adjustments
for the initial 10 epochs were calculated using Steepest
Gradient Descent, with a learning rate of 0.0001. For
the next 340 epochs, weight adjustments were performed

using Adaptive Moment Estimation (Adam) with a learning
rate of 0.01 and the default algorithm parameters (betas =
(0.9,0.99); epsilon = 1× 108) (Kingma & Ba, 2014). The
effects of word frequency, F were simulated by scaling
the cross-entropy error between the target unit activations
and the actual unit activations in the output layer by the
log-transformed word frequency, ln(F + 2). We completed
one sweep through every word in the training corpus before
updating the weights (i.e., batch learning). The updated
weights were also subject to a small amount of weight decay
(1× 10−6). After training on the base vocabulary for a total
of 350 epochs, error had reduced to a small, asymptotic
state, and 96.2% percent of words were pronounced correctly.
Here, a “correct” response was defined as whether the most
active vowel in the output pattern matched the target vowel in
the training example.
Learning new words After epoch 350, the base vocabulary
was expanded to also include the training anchors for each
dilution condition. The word frequency for the anchors was
specified for three dilution scaling amounts, D = {1, 1

2 ,
1
3}, as

ln((10∗D)+2), in order to maintain equal exposure to each
rhyme regardless of how many anchors shared that rhyme.
After training on the base vocabulary and prior to training
on the expanded vocabulary, the Adam optimizer was reset.
The model was then trained for an additional 350 epochs
until overall performance in the base vocabulary and for
each anchor type reached a stable state and all anchors were
pronounced correctly.

Results

The predicted behavioural markers of warping and dilution
are as follows: first, whereas the network will not
need to warp the space to represent regular anchors, it
will need to increasingly warp the space for ambiguous
and exception anchors. More warping should prevent
generalization for exception probes compared to ambiguous
probes. The dilution manipulation should recapitulate these
macro-structural changes at a micro-structural level: diluting
an exception anchor (or an ambiguous anchor) will make it
slightly less exceptional, leading to increased generalization.
To test for these predictions in a simple and straightforward
manner, our analyses focused on how often the model
produced the pronunciation of the vowel that was consistent
with the anchors learned during training. Warping was
expected to be necessary to accommodate the atypical
pronunciations associated with exceptions, and to a lesser
extent, with the ambiguous words.

In the vast majority of cases when the model was
not producing this training-consistent pronunciation, it
produced a regularized pronunciation consistent with the
regularities of the baseline vocabulary and not some third
other type of unexpected (“erronous”) response. Note that
for regular anchors, the regularized response is also the
training-consistent response.
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Figure 3: Proportion of Anchors and Probes producing training-consistent responses. The figure in the left panel depicts the
effects of training with anchors, in which all anchors were trained to perfect accuracy for all word types. The figure in the right
panel depicts the final accuracy of probes after training upon anchors, as well as the pre-training baseline. Regulars are not
depicted in the figure because they begin with perfect accuracy due to their rule-consistent pronunciations. Note the different
y-axis ranges were used across the two figures to better highlight the effects of interest.

Learning Anchors
The proportion of training-consistent responses for
ambiguous and exception anchors is presented in the
left panel of Figure 3. The “Pre-training” data was sampled
from training sweep 350, after the learning of the base
vocabulary, and the “Post-training” data were sampled from
training sweep 700, following an additional 350 sweeps of
training for both the anchors and the base vocabulary.

The “Pre-training” data establishes how well the base
vocabulary can be used as grounds for generalizing to
the untrained anchors, and as a basic validation of
the core characteristics of our anchors sets and of the
reimplementation of the Plaut et al. (1996) model. The
results show that the model never produces the correct
(training-consistent) pronunciation of an exception anchor,
sometimes produces a correct response for an ambiguous
anchor, and always produces a correct pronunciation of a
regular anchor, as expected.

After training on the anchors, the model learns to
pronounce all anchors perfectly for all dilution levels,
demonstrating that all item types can be represented in the
network. The critical question, then, is how well these
representations generalize to neighbouring nonword probes.

Generalizing to nonword probes
The proportion of training-consistent responses for the probes
is presented in the right panel of Figure 3. First, at a
macro-structural level, the results clearly show that the rates
of generalization are higher for ambiguous words than for
exception words, as predicted by the warping mechanism.
The predicted effects of dilution within each item type
also recapitulate these macro-structural effects at the
micro-structural level: the proportion of generalized anchor
pronunciations increases as a function of increased dilution.
That is, generalization of a newly learned pronunciation

increases as a function of increased context variability, here
defined as varying word onsets. Collectively, these results
provide important insights and explicit quantitative evidence
of how different aspects of a word’s representation influence
the warping of representational space, and the resulting
changes in generalization of the pronunciation of newly
learned words.

Discussion
Understanding how quasiregular domains are represented
so as to enable the generalization of regularities but not
inconsistencies is a fundamental issue in the cognitive
sciences. The present work expands past work exploring
warping to understand its sensitivity to context variables
that could affect word acquisition and generalization. In
particular, we probed whether macro-structural differences
in generalization rates for newly learned regular, ambiguous,
and exception anchors would be recapitulated at the
micro-structural level when the rhyming portion of a newly
learned word was diluted by presenting it in more than one
new word. We observed that this was indeed the case, such
that increased context variability in word onsets caused the
network to infer that there was stronger evidence that this new
pronunciation should be generalized, both for ambiguous and
exception items. Thus, context variability can play a critical
role in modulating the formation of warped representations.
Notably, these results were observed in the context of equal
ceiling performance for the explicitly trained anchor words of
each item type.

The results of our simulation suggest that generalization
is driven by the sublexical components of a word’s
representation, and that increased context variability in word
onsets for a same-rhyme ending helps the network infer that
a new sublexical regularity is emerging. Statistical cues to
segmentation a la Saffran, Aslin, and Newport (1996) and
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exemplar based models of segmentation (Perruchet & Vinter,
1998) work in similar ways. These results provide strong
predictions regarding how humans should perform when
learning these types of items which, if confirmed empirically,
could offer a new avenue for contrasting neural network and
dual route models. In particular, our results were observed
when the sublexical rhyme portion of the representation was
presented equally frequently and it was only the onset +
rhyme conjunction (i.e., the lexical representation) whose
frequency was varied across dilutions. This makes specific
quantitative predictions regarding the relative importance of
sublexical and lexical representations for generalization, as
well as for how and why rule-like behaviour emerges for new
consistencies.

Empirical data consistent with these claims has been
reported previously in a number of studies, wherein increased
context variability (broadly construed) leads to learning
benefits, although the exact magnitude of these benefits
has varied across studies (for discussion, see Roembke,
Freedberg, Hazeltine, & McMurray, 2020.) Whereas
this past work has typically focused primarily on the
learnability of new explicitly taught words (anchors, in
present parlance), the work we report highlights how such
learning is likely simultaneously impacting generalization
rates. This possibility is well-illustrated by considering
how our present findings might offer a slightly different
interpretation of the results reported by Roembke et al.
(2020). In their study, the authors tested children and
observed a benefit for variability in a consonontal frame
similar to our dilution manipulation. However, accuracy
for their “anchors” did not reach 100% at training. Our
results suggest that, insofar as some anchors sharing a
same pronunciation had not been learned, the benefits from
context variability may have arisen not just from explicit
learning of the anchors, but also from from generalization
of the knowledge of the successfully learned anchors to
the unsuccessfully learned anchors (effectively, probes, in
our nomenclature). Indeed, in additional simulations not
reported here for the sake of brevity, we have observed
that the likelihood of generalization of anchor knowledge
is modulated by how much experience the model has had
for learning the anchors in the lead up to the “steady state”
performance that we reported in detail in the results section,
wherein accuracy for the probes and anchors had remained
relatively stable for hundreds of training sweeps. A more
detailed examination of these transient effects is therefore a
clear direction for future work.

Our results may also relate to other aspects of word
learning. Several studies have reported how rule-like
generalizations can be enhanced in infants by providing
broader evidence of context variability in processing. For
example, Gerken (2006) noted that infants learning stimuli
generated using an AAB rule (e.g., leledi, dededi, wiwije,
jijili) were more likely to learn an abstract representation
of this rule if a more diverse set of syllables was used to

demonstrate the abstract rule (e.g., leledi, wiwije, jijili). In
contrast, if only a single syllable was used to code for the “B”
portion of the rule (e.g., leledi, wiwidi, jijidi), generalizations
appeared restricted to novel items that shared this B syllable.
For instance, in the former but not the latter case, infants were
more likely to generalize the rule to novel stimuli that had no
syllable overlap with the training stimuli, such as kokoba.

These results are consistent with our own findings that
experience with a diversity of onsets and a consistent word
ending lead to generalizations of the word ending to other
novel onsets. They also suggest that the warping principle
could be extended even further to explain more abstract
rule-like behaviour if we varied not only the onset of a
word, but also its rhyme. As such, the warping mechanism
may be relevant for understanding broad cross-sections of
the statistical learning literature focused on learning both
linguistic and non-linguistic stimuli (Armstrong, Frost, &
Christiansen, 2017). Thus, warping may have major
implications not only for the domain of reading aloud, but
also for learning and generalizing other aspects of language -
and beyond.

Conclusion
The present simulations clearly outline important predictions
regarding the micro-structure of how new representations are
learned and generalized, and how these processes can be
modulated by context variability that dilutes the degree to
which an inconsistent word’s onset occurs with a particular
rhyme. These results have clear connections and implications
for what and how representations are learned and generalized
when reading aloud, as well as for other linguistic domains
and domains in the cognitive sciences more generally. Our
explicit computational framework also has close links to
potential analogous behavioural experiments that examine
learning and generalization. Collectively, such coordinated
computational and behavioural studies should also allow for
the efficient exploration of how representational warping is
modulated by other key psycholinguistic factors, yielding
further insights into the operation of this powerful and flexible
mechanism.
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