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Abstract

Humans carry stereotypic tacit assumptions (STAs) (Prince,
1978), or propositional beliefs about generic concepts. Such
associations are crucial for understanding natural language.
We construct a diagnostic set of word prediction prompts to
evaluate whether recent neural contextualized language mod-
els trained on large text corpora capture STAs. Our prompts
are based on human responses in a psychological study of con-
ceptual associations. We find models to be profoundly effec-
tive at retrieving concepts given associated properties. Our re-
sults demonstrate empirical evidence that stereotypic concep-
tual representations are captured in neural models derived from
semi-supervised linguistic exposure.

Keywords: language models; deep neural networks; concept
representations; norms; semantics

Introduction
Recognizing generally accepted properties about con-
cepts is key to understanding natural language (Prince,
1978). For example, if one mentions a bear, one does
not have to explicitly describe the animal as having teeth
or claws, or as being a predator or a threat. This phe-
nomenon reflects one’s held stereotypic tacit assump-
tions (STAs), i.e. propositions commonly attributed to
“classes of entities” (Prince, 1978). STAs, a form of
common knowledge (Walker, 1991), are salient to cog-
nitive scientists concerned with how human representa-
tions of knowledge and meaning manifest.

As “studies in norming responses are prone to re-
peated responses across subjects” (Poliak et al., 2018),
cognitive scientists demonstrate empirically that hu-
mans share assumptions about properties associated
with concepts (McRae et al., 2005). We take these con-
ceptual assumptions as one instance of STAs and ask
whether recent contextualized language models trained
on large text corpora capture them. In other words, do
models correctly distinguish concepts associated with a
given set of properties? To answer this question, we de-
sign fill-in-the-blank diagnostic tests (Figure 1) based
on existing data of concepts with corresponding sets of
human-elicited properties.

By tracking conceptual recall from prompts of itera-
tively concatenated conceptual properties, we find that
the popular neural language models, BERT (Devlin et
al., 2019) and ROBERTA (Liu et al., 2019), capture
STAs. We observe that ROBERTA consistently outper-
forms BERT in correctly associating concepts with their

Prompt Model Predictions

A has fur. dog, cat, fox, ...
A has fur, is big, and has claws. cat, bear, lion, ...
A has fur, is big, has claws, has
teeth, is an animal, eats, is brown,
and lives in woods.

bear, wolf, cat, ...

Figure 1: The concept bear as a target emerging as the highest
ranked predictions of the neural LM ROBERTA-L (Liu et al., 2019)
when prompted with conjunctions of the concept’s human-produced
properties.

defining properties across multiple metrics; this perfor-
mance discrepancy is consistent with many other lan-
guage understanding tasks (Wang et al., 2018). We also
find that models associate concepts with perceptual cat-
egories of properties (e.g. visual) worse than with non-
perceptual ones (e.g. encyclopaedic or functional).

We further examine whether STAs can be extracted
from the models by designing prompts akin to those
shown to humans in psychological studies (McRae et
al., 2005; Devereux et al., 2014). We find significant
overlap between model and human responses, but with
notable differences. We provide qualitative examples in
which the models’ predictive associations differ from
humans’, yet are still sensible given the prompt. Such
results highlight the difficulty of constructing word pre-
diction prompts that elicit particular forms of reasoning
from models optimized purely to predict co-occurrence.

Unlike other work analyzing linguistic meaning cap-
tured in sentence representations derived from language
models (Conneau et al., 2018; Tenney et al., 2019), we
do not fine-tune the models to perform any task; we in-
stead find that the targeted tacit assumptions “fall out”
purely from semi-supervised masked language model-
ing. Our results demonstrate that exposure to large cor-
pora alone, without multi-modal perceptual signals or
task-specific training cues, may enable a model to suffi-
ciently capture STAs.

Background

Contextualized Language Models Language models
(LMs) assign probabilities to sequences of text. They
are trained on large text corpora to predict the probabil-
ity of a new word based on its surrounding context. Uni-
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directional models approximate for any text sequence
w = [w1,w2, . . .wN ] the factorized left-context probabil-
ity p(w) = ∏

N
i=1 p(wi | w1 . . .wi−1). Recent neural bi-

directional language models estimate the probability of
an intermediate ‘masked out’ token given both left and
right context; this task is colloquially “masked language
modelling” (MLM). Training in this way produces a
probability model that, given input sequence w and an
arbitrary vocabulary word v, predicts the distribution
p(wi = v | w1, . . .wi−1,wi+1, . . .wn). When neural bi-
directional LMs trained for MLM are subsequently used
as contextual encoders,1 performance across a wide
range of language understanding tasks greatly improves.

We investigate two recent neural LMs: Bi-
directional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019) and Robustly optimized
BERT approach (ROBERTA) (Liu et al., 2019). In ad-
dition to the MLM objective, BERT is trained with an
auxiliary objective of next-sentence prediction. BERT
is trained on a book corpus and English Wikipedia.
Using an identical neural architecture, ROBERTA is
trained for purely MLM (no next-sentence prediction)
on a much larger dataset with words masked out of
larger input sequences. Performance increases ubiqui-
tously on standard NLU tasks when BERT is replaced
with ROBERTA as an off-the-shelf contexual encoder.

Probing Language Models via Word Prediction Re-
cent research employs word prediction tests to ex-
plore whether contextualized language models cap-
ture a range of linguistic phenomena, e.g. syn-
tax (Goldberg, 2019), pragmatics, semantic roles, and
negation (Ettinger, 2020). These diagnostics have psy-
cholinguistic origins; they draw an analogy between the
“fill-in-the-blank” word predictions of a pre-trained lan-
guage model and distribution of aggregated human re-
sponses in cloze tests designed to target specific sen-
tence processing phenomena. Similar tests have been
used to evaluate how well these models capture sym-
bolic reasoning (Talmor et al., 2019) and relational
facts (Petroni et al., 2019).

Stereotypic Tacit Assumptions Recognizing associa-
tions between concepts and their defining properties is
key to natural language understanding and plays “a crit-
ical role in language both for the conventional meaning
of utterances, and in conversational inference” (Walker,
1991). Tacit assumption (TAs) are commonly accepted
beliefs about specific entities (Alice has a dog) and
stereotypic TAs (STAs) pertain to a generic concept,
or a class of entity (people have dogs) (Prince, 1978).
While held by individuals, STAs are generally agreed
upon and are vital for reflexive reasoning and pragmat-
ics; Alice might tell Bob ‘I have to walk my dog!,’ but

1That is, when used to obtain contextualized representations of
words and sequences.

she does not need to say “I am a person, and people
have dogs, and dogs need to be walked, so I have to
walk my dog!” Comprehending STAs allows for gen-
eralized recognition of new categorical instances, and
facilitates learning new categories (Lupyan et al., 2007),
as shown in early word learning by children (Hills et al.,
2009). STAs are not explicitly facts.2 Rather, they are
sufficiently probable assumptions to be associated with
concepts by a majority of people. A partial inspiration
for this work was the observation by Van Durme (2010)
that the concept attributes most supported by peoples’
search engine query logs (Pasca & Van Durme, 2007)
were strikingly similar to examples of STAs listed by
Prince. That is, there is strong evidence that the beliefs
people hold about particular conceptual attributes (e.g.
“countries have kings”), are reflected in the aggregation
of their most frequent search terms (“what is the name
of the king of France?”).

Our goal is to determine whether contextualized lan-
guage models exposed to large corpora encode associa-
tions between concepts and their tacitly assumed prop-
erties. We develop probes that specifically test a model’s
ability to recognize STAs. Previous works (Rubinstein
et al., 2015; Sommerauer & Fokkens, 2018; Da & Ka-
sai, 2019) have tested for similar types of stereotypic
beliefs; they use supervised training of probing classi-
fiers (Conneau et al., 2018) to identify concept/attribute
pairs. In contrast, our word prediction diagnostics find
that these associations fall out of semi-supervised LM
pretraining. In other words, the neural LM inducts STAs
as a byproduct of learning co-occurrence without receiv-
ing explicit cues to do so.

Probing for Stereotypic Tacit Assumptions
Despite introducing the notion of STAs, Prince (1978)
provides only a few examples. We therefore draw
from other literature to create diagnostics that evalu-
ate how well a contexualized language model captures
the phenomenon. Semantic feature production norms,
i.e. properties elicited from human subjects regarding
generic concepts, fall under the category of STAs. Inter-
ested in determining “what people know about different
things in the world,”3 McRae et al. (2005) had human
subjects list properties that they associated with individ-
ual concepts. When many people individually attribute
the same properties to a specific concept, collectively
they provide STAs. We target the elicited properties that
were most often repeated across the subjects.

Prompt Design We construct prompts for evaluating
STAs in LMs by leveraging the CSLB Concept Prop-
erty Norms (Devereux et al., 2014), a large extension
of the McRae study that contains 638 concepts each

2E.g., “countries have presidents” does not apply to all countries.
3Wording taken from instruction shown to participants—as

shown in Appendix B of McRae et al. (2005)
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Figure 2: Results from neural LM concept retrieval diagnostic. Mean reciprocal rank and assigned probability of correct concept word sharply
increase with the number of conjunctive properties in the prompt.

linked with roughly 34 associated properties. The fill-
in-the-blank prompts are natural language statements in
which the target concept associated with a set of human-
provided properties is the missing word . If LMs accu-
rately predict the missing concept, we posit that they en-
code the given STA set. We iteratively grow prompts by
appending conceptual properties into a single compound
verb phrase (Figure 1) until the verb phrase contains 10
properties. Since we test for 266 concepts, this pro-
cess creates a total of 2,660 prompts.4 Devereux et al.
(2014) record production frequencies (PF) enumerating
how many people produced each property for a given
concept. For each concept, we select and append the
properties with the highest PF in decreasing order. It-
eratively growing prompts enables a gradient of perfor-
mance - we observe concept retrieval given few “clue”
properties and track improvements as more are given.

Probing Method Prompts are fed as toknized se-
quences to the neural LM encoder with the concept to-
ken replaced with a [MASK]. A softmax is taken over
the final hidden vector extracted from the model at the
index of the masked token to obtain a probability dis-
tribution over the vocabulary of possible words. Fol-
lowing Petroni et al. (2019), we use a pre-defined, case-
sensitive vocabulary of roughly 21K tokens to control
for the possibility that a model’s vocabulary size influ-
ences its rank-based performance.5 We use this proba-
bility distribution to obtain a ranked list of words that
the model believes should be the missing t token. We

4Because LMs are highly sensitive to the ‘a/an’ determiner pre-
ceding a masked word e.g. LMs far prefer to complete “A
buzzes,” with “bee,” but prefer e.g. “insect” to complete “An
buzzes.”, a task issue noted by Ettinger (2020). We remove exam-
ples containing concepts that begin with vowel sounds. A prompt
construction that simultaneously accepts words that start with both
vowels and consonants is left for future work.

5The vocabulary is constructed from the unified intersection of
those used to train BERT and ROBERTA. We omit concepts that
are not contained within this intersection.

evaluate the BASE (-B) and LARGE (-L) cased models
of BERT and ROBERTA.

Evaluation Metrics We use mean reciprocal rank
(MRR), or 1/rankLM(target concept), a metric more
sensitive to fine-grained differences in rank than other
common retrieval metrics such as recall. We track the
predicted rank of a target concept from relatively low
ranks given few ‘clue’ properties to much higher ranks
as more properties are appended. MRR above 0.5 for
a test set indicates that a model’s top 1 prediction is
correct in a majority of examples. We also report the
overall probability the LM assigns to the target concept
regardless of rank. This allows us to measure model
confidence beyond empirical task performance.

Results
Figure 2 displays the results. When given just one prop-
erty, ROBERTA-L achieves a MRR of 0.23, indicating
that the target concept appears on average in the model’s
top-5 fill-in predictions (over the whole vocabulary).
The increase in MRR and model confidence (y-axis) as
properties are iteratively appended to prompts (increas-
ing x-axis) demonstrates that the LMs more accurately
retrieve the missing concept when given more associ-
ated properties. MRR steeply increases for all models as
properties are added to a prompt, but we find less stark
improvements after the first four or five. The LARGE
models consistently outperform their BASE variants un-
der both metrics, as do ROBERTAs over the BERTs
of the same size. ROBERTA-B and BERT-L per-
form interchangeably. Notably, ROBERTA-L achieves
a higher performance on both metrics when given just
4 ‘clue’ properties than any other model when pro-
vided with all 10. ROBERTA-L assigns double the
target probability at 10 properties than that of the next
best model (ROBERTA-B). Thus, ROBERTA-L is pro-
foundly more confident in its correct answers than any
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(a) (b)

Figure 3: (a) Comparison of ROBERTA-L’s performance given only properties from each category versus all combined. (b) ROBERTA-L
performance given the property sets with the top vs bottom production frequencies (PF) ordered in increasing vs decreasing PF. Plotted against
a randomly sampled and reordered baseline.

other model. However, that all models achieve at least
between .5 and .85 MRR conditioned on 10 properties
illustrates the effectiveness of all considered models in
identifying concepts given STA sets.

Qualitative Analysis We find that model predictions
are nearly always grammatical and semantically sensi-
ble. Highly-ranked incorrect answers generally apply
to a subset of the conjunction of properties, or are cor-
rect at an intermediate iteration but become precluded
by subsequently appended properties. 6 We note that an
optimal performance may not be perfect; not all prompts
uniquely identify the target concept, even at 10 proper-
ties. 7 However, models still perform nearly as well as
could be expected given the ambiguity.

Properties Grouped by Category To measure
whether the the type of property affects the ability of
LMs to retrieve a concept, we create additional prompts
that only contain properties of specific categories as
grouped by Devereux et al. (2014): visual perceptual
(bears have fur), functional (eat fish), and encyclopaedic
(are found in forests).8

Figure 3a shows that ROBERTA-L performs inter-
changeably well given just encyclopedic or functional
type properties. BERT (not shown) shows a similar
overall pattern, but it performs slightly better given en-
cyclopedic properties than functional. Perceptual prop-
erties are overall less helpful for models to distinguish
concepts than non-perceptual. This may be the prod-
uct of category specificity; while perceptual properties
are produced by humans nearly as frequently as non-

6E.g. tiger and lion are correct for ‘A has fur, is big, and has
claws’ but reveal to be incorrect with the appended ‘lives in woods’

7E.g. the properties of buffalo do not distinguish it from cow.
8We omit the categories “other perceptual” (bears growl) and

“taxonomic” (bears are animals), as few concepts have more than
2-3 such properties.

perceptual, the average perceptual property is assigned
to nearly twice as many CSLB concepts as the average
non-perceptual (6 to 3). However, the empirical finding
coheres with previous conclusions that models that learn
from language alone lack knowledge of perceptual fea-
tures (Collell & Moens, 2016; Lucy & Gauthier, 2017).

Selecting and Ordering Prompts When designing the
probes, we selected and appended the 10 properties with
the highest production frequencies (PF) in decreasing
order. To investigate whether these selection and or-
dering choices affect a model’s performance in the re-
trieval task, we compare the top-PF property selection
method with an alternative selection criterion using the
bottom-PF properties. For both selection methods, we
compare the decreasing-PF ordering with a reversed,
increasing-PF order. We compare the resulting 4 eval-
uations against a random baseline that measures per-
formance using a random permutation of a randomly-
selected set of properties.9

Figure 3b compare the differences in performance.
Regardless of ordering, the selection of the top
(bottom)-PF features improves (reduces) model perfor-
mance relative to the random baseline. Ordering by
decreasing PF improves performance over the oppo-
site direction by up to 0.2 for earlier sizes of property
conjunction, but the two strategies converge in perfor-
mance for larger sizes. This indicates that the selection
and ordering criteria of the properties may matter when
adding them to prompts. The properties with lower
PF are correspondingly less beneficial for model per-
formance. This suggests that assumptions that are less
stereotypic—that is, highly salient to fewer humans—
are less well captured by the LMs.

9The random baseline’s performance is averaged over 5 random
permutations of 5 random sets for each concept.
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Eliciting Properties from Language Models
We have found that neural language models capture to
a high degree the relationship between human-produced
sets of stereotypic tacit assumptions and their associated
concepts. Can we use the LMs to retrieve the conceptual
properties under the same type of setup used for human
elicitation? We design prompts to replicate the “linguis-
tic filter” (McRae et al., 2005) through which the human
subjects conveyed conceptual assumptions.

In the human elicited studies, subjects were asked
to list properties that would complete “{concept}
{relation}...” prompts in which the relation could take
on10 one of four fixed phrases: is, has, made of, and
does. We mimic this protocol using the first three rela-
tions11 and compare the properties predicted by the LMs
to the corresponding human response sets. Examples of
this protocol are shown in Table 1.

Comparing LM Probabilities with Humans We can
consider the listed properties as samples from a fuzzy
notion of a human STA distribution conditioned on the
concept and relation. These STAs reflect how humans
codify their probabilistic beliefs about the world. What
a subject writes down about the ‘dog’ concept reflects
what that subject believes from their experience to be
sufficiently ubiquitous, i.e. extremely probable, for all
‘dog’ instances. The dataset also portrays a distribu-
tion over listed STAs. Not all norms are produced
by all participants given the same concepts and rela-
tion prompts; this reflects how individuals hold differ-
ent sets of STAs about the same concept. Through
either of these lenses, we can speculate that the hu-
man subject produces the sample e.g. ‘fur’ from some
p(STA | concept = bear, relation = has). 12 We can
consider our protocol to be sampling from a LM approx-
imation of such a conditional distribution.

Limits to Elicitation Asking language models to list
properties via word prediction is inherently limiting,
as the models are not primed to specifically produce
properties beyond whatever cues we can embed in
the context of a sentence. In contrast, human sub-
jects were asked directly “What are the properties of
X?” (Devereux et al., 2014). This is a highly semanti-
cally constraining question that cannot be directly asked
of an off-the-shelf language model.

The phrasing of the question to humans also has im-
plications regarding salience: when describing a dog,

10Selected at the discretion of the subject via a drop-down menu.
11We do not investigate the does relation or the open-ended “...”

relation, because the resulting human responses are not easily com-
parable with LM predictions using template-based prompts. We
construct prompts using is a and has a for broader dataset coverage.

12This formulation should be taken with a grain of salt; the subject
is given all relation phrases at once and has the opportunity to fill out
as many (or few) completions as she deems salient, provided that in
combination there are at least 5 total properties listed.

Context Human ROBERTA-L

Response PF Response pLM

(Everyone
knows that) a
bear has .

fur 27 teeth .36
claws 15 claws .18
teeth 11 eyes .05
cubs 7 ears .03
paws 7 horns .02

(Everyone
knows that) a
ladder is made
of .

metal 25 wood .33
wood 20 steel .08
plastic 4 metal .07

aluminum 2 aluminum .03
rope 2 concrete .03

Table 1: Example concept/relation prompts with resulting human
and ROBERTA-L responses (and corresponding production fre-
quencies and LM probabilities, resp.). Portions of context prompts
encased in () were only shown to the model, not human.

humans would rarely, if never, describe a dog as being
“larger than a pencil”, even though humans are “ca-
pable of verifying” this property (McRae et al., 2005).
Even if they do produce a property as opposed to an al-
ternative lexical completion, it may be unfair to expect
language models to replicate how human subjects pre-
fer to list properties that distinguish and are salient to
a concept (e.g. ‘goes moo’) as opposed to listing prop-
erties that apply to many concepts (e.g. ‘has a heart’).
Thus, comparing properties elicited by language models
to those elicited by humans is a challenging endeavour.
Anticipating this issue, we prepend the phrase ‘Every-
one knows that’ to our prompts. They therefore take
the form shown in the left column of Table 1. For
the sake of comparability, we evaluate the models’ re-
sponses against only the human responses that fit the
same syntax. We also remove human-produced proper-
ties with multiple words following the relation (e.g. ‘is
found in forests’) since the contextualized LMs under
consideration can only predict a single missing word.
Our method produces a set of between 495 and 583
prompts for each of the relations considered.

Results We use the information retrieval metric mean
average precision (mAP) for ranked sequences of pre-
dictions in which there are multiple correct answers. We
define mAP here given n test examples:

mAP =
1
n

n

∑
i=1

|vocab|

∑
j=1

Pi( j)∆ri( j)

where Pi( j) = precision@ j and ∆ri( j) is the change in
recall from item j− 1 to j for example i. We report
mAP on prediction ranks over a LM’s entire vocabu-
lary (mAPVOCAB), but also over a much smaller vocab-
ulary (mAPSENS) comprising the set of human comple-
tions that fit the given prompt syntax for all concepts in
the study. This follows the intuition that responses given
for a set of concepts are likely not attributes of the other
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Relation |Data| Metric Bb Bl Rb Rl

is 583 mAPVOCAB .081 .080 .078 .190
mAPSENS .131 .132 .105 .212
ρHuman PF .062 .100 .062 .113

is a 506 mAPVOCAB .253 .318 .266 .462
mAPSENS .393 .423 .387 .559
ρHuman PF .226 .389 .385 .386

has 564 mAPVOCAB .098 .043 .151 .317
mAPSENS .171 .138 .195 .367
ρHuman PF .217 .234 .190 .316

has a 537 mAPVOCAB .202 .260 .136 .263
mAPSENS .272 .307 .208 .329
ρHuman PF .129 .153 .174 .209

made of 495 mAPVOCAB .307 .328 .335 .503
mAPSENS .324 .339 .347 .533
ρHuman PF .193 .182 .075 .339

Table 2: Mean average precision and Spearman ρ with human PF for
LM prediction of properties given concept/relation pairs. B and R
indicate BERT and ROBERTA, b and l indicate -BASE and -LARGE.

concepts, and models should be sensitive to this discrep-
ancy. While mAP measures the ability to distinguish
the set13 of correct responses from incorrect responses,
we also evaluate probability assigned among the correct
answers by computing average Spearman’s ρ between
human production frequency and LM probability.

Results using these metrics are displayed in Table 2.
We find that ROBERTA-L outperforms the other mod-
els by up to double mAP. No model’s rank ordering of
correct answers correlates particularly strongly with hu-
man production frequencies. When we narrow the mod-
els’ vocabulary to include only the property words pro-
duced by humans for a given syntax, we find that per-
formance (mAPSENS) increases ubiquitously.

Qualitative Analysis Models generally provide coher-
ent and grammatically acceptable completions. Most
outputs fall under the category of ‘verifiable by hu-
mans,’ which as noted by McRae et al. could be listed
by humans given sufficient instruction. We observe
properties that apply to the concept but are not in the
dataset 14 and properties that apply to senses of a con-
cept that were not considered in the human responses. 15

We find that some prompts are not sufficently syntacti-
cally constraining, and license non-nominative comple-
tions. The relation has permits past participle comple-
tions (e.g. ‘has arrived’) along with the targeted nomina-
tive attributes (‘has wheels’). We also find that models
idiosyncratically favor specific words regardless of the
concept, which can lead to unacceptable completions.16

13Invariant to order of correct answers.
14E.g. ‘hamsters are real’ and ‘motorcycles have horsepower’.
15While human subjects list only properties of the object anchor,

LMs also provide properties of a television anchor.
16ROBERTA-B often blindly produces ‘has legs’, the two BERT

models predict that nearly all concepts are ‘made of wood,’ and all
models except ROBERTA-L often produce ‘is dangerous.’

Prince Example ROBERTA-L

A person has parents, sib-
lings, relatives, a home, a pet,
a car, a spouse, a job. ,

person [.73], child [.1], hu-
man [.04], family [.03], kid
[.02]

A country has a leader, a
duke, borders, a president,
a queen, citizens, land, a
language, and a history.

constitution [.23], history
[.07], culture [.07], soul
[.04], budget [.03], border
[.03], leader [.03], currency
[.02], population [.02]

Table 3: ROBERTA-L captures Prince’s own exemplary STAs (tar-
get completions bolded), as shown by predictions of both concept
and properties (associated probability in brackets).

Effect of Prompt Construction We investigate the
extent to which our choice of lexical framing impacts
model performance by ablating the step in which “ev-
eryone knows that” is prepended to the prompt. We find
a relatively wide discrepancy in effects; with the less-
ened left context, models perform on average .05 and
.1 mAP worse on the is and has relations respectively,
but perform .06 and .01 mAP better on is a and has
a. Notably, ROBERTA-L sees a steep drop in perfor-
mance on the has relation, losing nearly .3 mAP. We
observe that models exhibit highly varying levels of in-
stability given the choice of context. This highlights the
difficulty in constructing prompts that effectively target
the same type of lexical response from any arbitrary bi-
directional LM.

Capturing Prince’s STAs
We return to Prince (1978) to investigate whether neu-
ral language models, which we have found to capture
STAs elicited from humans by McRae, do so as well
for what she envisioned. Prince lists some of her own
STAs about the concepts country and person. We ap-
ply the methodologies of the previous experiments and
show the resulting conceptual recall and feature produc-
tions in Table 3. We find significant overlap in both di-
rections of prediction. Thus, the exact examples of basic
information about the world that Prince considers core
to discourse and language processing are clearly cap-
tured by the neural LMs under investigation.

Conclusion
We have explored whether the notion owing to Prince
(1978) of the stereotypic tacit assumption (STA), a
type of background knowledge core to natural language
understanding, is captured by contexualized language
modeling. We developed diagnostic experiments de-
rived from human subject responses to a psychologi-
cal study of conceptual representations and observed
that recent contextualized LMs trained on large cor-
pora may indeed capture such important information.
Through word prediction tasks akin to human cloze
tests, our results provide a lens of quantitative and qual-
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itative exploration of whether BERT and ROBERTA
capture concepts and associated properties. We illus-
trate that the conceptual knowledge elicited from hu-
mans by Devereux et al. (2014) is indeed contained
within an encoder; when a speaker may mention some-
thing that ‘flies’ and ‘has rotating blades,’ the LM can
infer the description is of a helicopter. We hope that our
work serves to further research in exploring the extent
of semantic and linguistic knowledge captured by con-
textualized language models.

Acknowledgements

This work was supported in part by DARPA KAIROS
(FA8750-19-2-0034). The views and conclusions con-
tained in this work are those of the authors and should
not be interpreted as representing official policies or en-
dorsements of DARPA or the U.S. Government.

References

Collell, G., & Moens, M.-F. (2016). Is an image worth
more than a thousand words? on the fine-grain seman-
tic differences between visual and linguistic represen-
tations. In COLING.

Conneau, A., Kruszewski, G., Lample, G., Barrault, L.,
& Baroni, M. (2018). What you can cram into a sin-
gle $&!#* vector: Probing sentence embeddings for
linguistic properties. In ACL.

Da, J., & Kasai, J. (2019). Cracking the Contextual
Commonsense Code: Understanding Commonsense
Reasoning Aptitude of Deep Contextual Representa-
tions. In First Workshop on Commonsense Inference
in Natural Language Processing.

Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B.
(2014). The centre for speech, language and the brain
(CSLB) concept property norms. Behavior Research
Methods, 46(4).

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL.

Ettinger, A. (2020). What BERT is not: Lessons from a
new suite of psycholinguistic diagnostics for language
models. TACL, 8, 34–48.

Goldberg, Y. (2019). Assessing BERT’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

Hills, T. T., Maouene, M., Maouene, J., Sheya, A., &
Smith, L. (2009). Categorical Structure among Shared
Features in Networks of Early-learned Nouns. Cogni-
tion, 112(3), 381–396.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen,
D., . . . Stoyanov, V. (2019). RoBERTa: A robustly

optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692.

Lucy, L., & Gauthier, J. (2017). Are distributional rep-
resentations ready for the real world? evaluating word
vectors for grounded perceptual meaning. In First
Workshop on Language Grounding for Robotics.

Lupyan, G., Rakison, D. H., & McClelland, J. L. (2007).
Language is not just for talking: Redundant labels fa-
cilitate learning of novel categories. Psychological
Science, 18(12), 1077-1083.

McRae, K., Cree, G. S., Seidenberg, M. S., & McNor-
gan, C. (2005). Semantic feature production norms
for a large set of living and nonliving things. Behav-
ior Research Methods, 37(4), 547–559.

Pasca, M., & Van Durme, B. (2007). What you seek
is what you get: Extraction of class attributes from
query logs. In IJCAI.
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