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Abstract 
Although many studies have shown that being exposed to 
empirical data that contradict one’s beliefs can lead to learning, 
it is not clear whether calling attention to inconsistencies 
among beliefs without the provision of new data, leads to 
learning. The present study asked whether calling attention to 
inconsistent beliefs via thought experiments leads to belief 
revision. Five-hundred-seventy-five participants were assigned 
to three different conditions in a pre-training, training, post-
training design. The results showed that participants generated 
inconsistent beliefs between pre-training and training, but they 
did not spontaneously revise them at post-training (Baseline 
Condition). They did revise them, however, when they were 
asked to reason about the implications of the training thought 
experiments (Warning Condition) and when they saw an 
explicit inference drawn from the training thought experiments 
(Explicit Inference Condition). These results show that, with 
prompting, scientifically naïve adults can learn from thought 
experiments.       

Keywords: thought experiments; learning; belief revision; 
naïve physics 

Introduction 
The richness of the human conceptual repertoire is unique in 
the natural world. However, our theories about the world and 
our concepts, which are atoms of beliefs, do not always agree 
with nature. Often, our theories are wrong, just like the theory 
about phlogiston in the history of science was wrong. The 
process of theory change, conceptual revision, and 
conceptual change is hard and prolonged, and it relies on 
specialized learning mechanisms (Carey, 2009). One 
important factor that motivates theory revisions are noticed 
contradictions between the predictions made by the learner 
on the basis of her conceptual system and data that come 
either from other people (Harris, 2012) or from direct 
empirical observation. Indeed, being exposed to data that 
contradict currently held beliefs leads to more exploratory 
behavior, more explanations, and more learning (Bonawitz, 
van Schijndel, Friel, & Schulz, 2012; Legare, Gelman, & 
Wellman, 2008; Schulz, Goodman, Tenenbaum, & Jenkins, 
2008; Stahl & Feigenson, 2015). However, it is not clear 
whether exposing inconsistencies in the learner’s system of 
beliefs, without the provision of new data, would lead to 
learning.  
 Thomas Kuhn (1977) proposed that conceptual change 
could be motivated by thought experiments (TEs). Thought 
experiments are experiments conducted in the head. They are 
typically presented as a narrative, which invites the learner to 
imagine a scenario where the learner applies her concepts as 

she usually does in the real world. The learner runs the 
experiment and sees the outcome (Brown & Fehige, 2014; 
Nersessian, 1992). Sometimes, the outcome of a thought 
experiment are two solutions that contradict each other, 
suggesting that there must be something wrong with the 
learner’s concepts. It is thought experiments like this that 
according to Kuhn (1977) can reveal the exact way in which 
nature does not agree with the learner’s conceptual system 
and can thus motivate conceptual revision. Given the lack of 
empirical studies, it is not clear whether scientifically naïve 
learners can benefit from such thought experiments. The 
present study begins to address this question. 

The Machinery of TEs 
There are several, not mutually exclusive ways in which 
thought experiments could generate outcomes. First, thought 
experiments could work just like any other inductive or 
deductive argument where the learner begins from some 
known premises and reaches a novel conclusion (Norton, 
2004). Alternatively, thought experiments could be more like 
real experiments in the sense that they rely on quasi-
observational or imagistic simulations (Gendler, 2004). In 
this case, conducting a thought experiment would consist of 
running a simulation where the process of simulating is 
similar to data collection. Finally, thought experiments could 
rely on model-based reasoning where the learner develops a 
mental model and runs simulations of the model, which is the 
basis for generating new outcomes (Nersessian, 1992). Any 
of the processes listed above could generate new outcomes, 
and in this paper, I am not trying to differentiate between 
them. Here, the focus is on a special case where the outcome 
of a thought experiment is inconsistent with other beliefs held 
by the learner, and therefore inconsistent with outcomes that 
could be drawn from other TEs. Would the realization that 
one’s beliefs are inconsistent with each other lead to 
conceptual work and belief revision, and if yes, then how 
does the learner decide which beliefs are true?  

Learning by thinking  
That noticing inconsistencies in one’s beliefs should 

benefit learning is supported by findings showing that 
providing self-explanations or conducting mental simulations 
is epistemically beneficial (Lombrozo, 2019). Some possible 
reasons for why this might be the case is that simulations 
allow learners to extract isolated representations from 
different modules and use them in downstream reasoning, 
which would not happen otherwise (Aronowitz & Lombrozo, 
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in press). Furthermore, producing explanations allows 
learners to directly compare the explananda with prior beliefs 
and prior knowledge (Williams & Lombrozo, 2013), and they 
allow the learners to have better metacognitive awareness of 
inconsistencies or lack of explanatory depth (Chi, De Leeuw, 
Chiu, & Lavancher, 1994; Rozenblit & Keil, 2002).  

There are, however, many reasons why pointing out 
inconsistencies in one’s beliefs might not benefit learning. 
First, it is not clear that learners would even notice 
inconsistencies in their beliefs. One possible obstacle might 
be the inability to see deep structural relationships between 
various beliefs. Learners may hold inconsistent beliefs 
without ever realizing that they are structurally related to each 
other (Gentner & Markman, 1997; Gick & Holyoak, 1980; 
1983). Another obstacle, as recent evidence suggests, is that 
both scientifically naïve individuals and scientists seem to be 
blissfully unaware of harboring what appear to be naïve 
theories and scientific theories that are in conflict with each 
other (e.g., see Shtulman & Harrington, 2016; Shtulman & 
Legare, in press; Shtulman & Lombrozo, 2016; Shtulman & 
Valcarcel, 2012). Although these studies do not offer 
examples of conflicting beliefs that exist at a conscious level, 
they still show that there are underlying competing 
representations and computations that produce outputs that 
are in conflict with each other and can therefore sometimes, 
e.g., under speeded conditions (Goldberg & Thompson-
Schill, 2009) or because of weakened EFs (Tardiff, 
Bascandziev, Sandor, Carey, & Zaitchik, 2017), produce 
conflicting beliefs that reach consciousness. Finally, even if 
the learner notices some explicit inconsistencies, there are 
other potential pitfalls. For example, even though humans are 
generally motivated to maintain internal consistency among 
beliefs, values, and actions (Festinger, 1957), as is well 
known, the ways by which cognitive dissonance is avoided 
are not necessarily epistemically prudent (Hart, Allbarracin, 
Eagly, Brechan, Lindberg, & Merril, 2009), and they may 
include processes such as ignoring of conflicting information.  
 In the present study, I asked two general questions. First, 
could thought experiments be used to show that individuals 
are harboring inconsistent beliefs? Second, would individuals 
who generate inconsistent beliefs move to revise them, and if 
yes, then in which direction, and under the influence of which 
factors? I asked these questions in the context of a scientific 
understanding of forces and motion. According to Newtonian 
mechanics, no force is required for an object at rest to remain 
at rest and no force is required for an object in motion to 
remain in motion. Although many people may know how to 
recite this law, it does not mean that their underlying concepts 
of force and motion are Newtonian. Indeed, the mastering of 
Newtonian concepts is very difficult (Halloun & Hestenes, 
1985). The naïve understanding of forces and motion 
resembles the medieval impetus theory, according to which 
objects set in motion receive an impetus (a force that is inside 
the object while it is moving), which slowly dissipates and 
becomes weaker, leading to the slowing down and eventual 
stopping of the object (Clement, 1982; McCloskey, 1983; 
McCloskey, Caramazza, & Green, 1980). Although thought 

experiments have been traditionally used to elicit beliefs that 
are consistent with the impetus theory (e.g., see McCloskey, 
1983), other representations derivable from perceptual 
memory or implicit in perceptual-motor procedures are 
consistent with Newtonian mechanics, and could be elicited 
by thought experiments that highlight relevant contexts. In 
the present study, I contrasted thought experiments designed 
to elicit beliefs consistent with the impetus theory to thought 
experiments inspired by Galileo Galilei and designed to elicit 
beliefs consistent with Newtonian mechanics in a Pre-
Training (Impetus TEs), Training (Newtonian TEs), Post-
Training (Impetus TEs) design. I asked whether participants 
would spontaneously notice inconsistencies between their 
Pre-Training and Training beliefs, which would lead them to 
change their initial beliefs (Baseline Condition) and whether 
this would be augmented by receiving a warning to monitor 
for such inconsistencies (Warning Condition) or by seeing an 
explicit inference that follows from the Training TEs and 
directly contradicts the impetus outcomes from the Pre and 
Post-Training TEs (Explicit Inference Condition).  

Method 

Participants 
I recruited 600 participants (200 per condition) from the 

US on Amazon’s Mechanical Turk platform. A total of 25 
participants were excluded (10 from the Baseline Condition; 
7 from the Warning Condition; and 8 from the Explicit 
Inference Condition) because they failed the control 
questions embedded in the survey. The final sample consisted 
of 575 participants with an average age of 36 (range = 18 – 
74; SD = 11.25). Two-hundred-seventy-nine identified as 
females, two-hundred-ninety-two identifies as males, and 4 
identified as non-binary. A total of 313 participants had taken 
a high-school or college-level physics class (130 took both; 
154 took high-school physics only; and 29 took college 
physics only) and 262 had not taken any physics classes.  

Design and Stimuli 
The experiment consisted of 4 Pre-Training TEs designed 

to elicit impetus responses, 4 Training TEs designed to elicit 
Newtonian responses, and 4 Post-Training, which were the 
same 4 TEs from Pre-Training. After running and answering 
each TE, participants reported the basis for their response 
(e.g., theoretical knowledge, specific memories, simulation 
of the event), and how confident they were in the basis of 
their response. 
 The 4 Pre- and Post-Training TEs were inspired by 
previous work (e.g., Clement, 1982; McCloskey, 1983; 
McCloskey et al., 1980) that used thought experiments (i.e., 
narratives that invited participants to imagine a scenario and 
give a qualitative prediction about what would happen) to 
uncover misconceptions that people have about forces and 
motion. All 4 thought experiments in the present study were 
variations on a theme: a vehicle is moving at a constant 
velocity in a straight line; an object that was attached to the 
vehicle is either dropped downwards or launched upwards; 
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participants are asked to describe either the trajectory of the 
object or where it would land. Here is an example of one such 
thought experiment: “A train is moving at a constant velocity 
of 100 MPH in a straight line. Inside the train, there is a 
mechanical claw that is holding a ball. The mechanical claw 
is fixed and rigid and so it does NOT move as a result of 
vibrations. Furthermore, the claw is located halfway along 
the ceiling between the front and the rear ends of the car. At 
one point, the ball is released. Please ignore air resistance. 
There is no wind inside the car. The ball will fall: a) Behind 
the halfway point of the car floor b) Exactly on the halfway 
point of the car floor.” A typical, incorrect answer that is 
consistent with the impetus theory of motion would be that 
the ball would fall behind the halfway point of the car floor 
because once the ball is detached from the train, it will start 
losing the force that kept it moving, and it will slow down 
relative to the train.   
 The 4 Training TEs were designed to abstract the 
Newtonian law that no force is required for bodies at rest to 
remain at rest and no force is required for bodies in motion to 
remain in motion. All 4 thought experiments asked 
participants to reason about the forces that act on a body 
while the body is on a vehicle that travels at a constant speed 
(e.g., a train or the spinning Earth), and thus realize that no 
such forces act on the body as a result of the motion of the 
vehicle. Here is an example of a Training TE: “Earth spins 
from west to east at a constant velocity of ~ 1000 MPH at the 
equator. Imagine yourself at the equator, standing on a flat 
surface, facing east. Would you feel that you are being 
pushed backward and you need to use your own force to 
remain in one place? a) Yes, I would feel forces pushing my 
body in a direction opposite from the direction in which the 
earth is moving b) No, I would not feel any forces pushing 
my body in a direction opposite from the direction in which 
the earth is moving.”  
 In the Warning Condition, before receiving the Training 
TEs, participants received a note that they will next see 
problems designed to improve their understanding of the 
phenomena they reasoned about at Pre-Training. It asked 
them to “think about the implications of their answers, and 
about how they relate to their previous answers.” It also asked 
them to “think about whether they would have answered the 
previous questions differently, had they been aware of the 
answers to the new questions.” 
 In the Explicit Inference Condition, after receiving the 
Training TEs, participants received an explicit inference that 
followed from the Training TEs, saying that “… no forces are 
pushing you in a direction opposite from the direction of the 
motion. That means that if you jump upward, the earth’s 
ground (or the vehicle’s floor) will not escape beneath your 
feet. It also means that if you are dropped from a cliff, you 
will fall in a straight line, and while you are falling, you will 
not lose any speed relative to the ground (floor) beneath you.” 
Participants were asked if they agreed with this statement.  

Procedure 
The surveys were prepared and administered via Qualtrics. 

After giving their consent, participants proceeded to the TEs. 
The demographic questions (age, gender) and whether they 
had taken any physics classes were asked at the end of the 
survey.  

Results 
A preliminary analysis showed that the relationship 

between previous physics education (high-school and 
college-level physics) and performance at Pre-Training was 
weak (rs < .1) and not statistically significant (ps>.05), 
although it was trending toward being significant. Unlike 
many other studies in which participants are college-age 
students who have recently been in contact with physics 
classes, the present sample was comprised of participants 
with a much wider age range, many of whom had not had any 
contact with formal education in years or even decades. It is 
likely that this is why the magnitude of the effect of education 
was very small. The remaining analyses were conducted by 
collapsing over this variable.  
Pre-Training Performance. The average performance of all 
575 participants at Pre-Training was M = 2.32 (out of 4); SD 
= 1.46; range = 0 – 4. A one-way ANOVA with Pre-Training 
performance as the dependent variable and Condition as the 
independent variable showed that participants’ performance 
was comparable across conditions at Pre-Training (F(2, 572) 
= .49, p = .61). The average confidence across all 4 TEs that 
participants had in the bases of their answers at Pre-Training 
was M = 3.43 (on a 1 to 5 scale); SD = 1.04; range = 1 – 5. 
This initial result replicates previous findings showing that 
somewhere between 47% and 68% (depending on the 
problem) gave correct Newtonian answers, whereas the 
majority of incorrect answers (30% to 51%) were curvilinear 
impetus responses (McCloskey et al., 1980). In the present 
study, the Pre-Training items were answered correctly by 
59%, 67%, 49%, and 56% of all participants. The similarity 
and persistence of the impetus like reasoning in the different 
samples (i.e., undergraduate students vs Amazon MTurk 
participants with a time gap of nearly 40 years between the 
two; i.e., 1980s in the case of McCloskey (1980) vs the 
present study), is striking.  
Training Performance and Comparison with Pre-
Training. In contrast to the Pre-Training performance, many 
more participants gave correct Newtonian responses to the 
training TEs. The average performance was M = 3.29 (out of 
4); SD = 1.02; range = 0 – 4. Broken down by item, 67%, 
85%, 86%, and 90% of all participants gave Newtonian 
responses on the Training TEs. These results show that many 
of the participants who had given impetus like responses at 
Pre-Training, gave Newtonian responses at Training. In other 
words, the very same people seem to espouse beliefs that 
contradict each other. To check that participants were 
comparable across the 3 different conditions, I conducted a 
one-way ANOVA with performance on Training TEs as a 
dependent variable and Condition as an independent variable,  
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Table 1. Average performance at Pre- and Post-Training by condition. 

 
which confirmed that there were no significant differences 
between the 3 conditions (F(2, 572) = 1.61, p = .21.  

I expected the confidence that participants had in the basis 
of each answer on the Training TEs would be higher than 
their confidence at Pre-Training, because the Training TEs 
were based on direct perceptual-motor memories about the 
kinds of forces that we feel on our own bodies while on a 
vehicle that is moving at a constant speed. This prediction 
was confirmed. The average confidence was M = 3.88 (on a 
1 to 5 scale); SD = .96; range = 1 – 5. This was significantly 
higher than the confidence at Pre-Training (M = 3.43) (t(574) 
= 13.61, p < .001). Importantly, there were no significant 
differences among participants in the three conditions in 
terms of their confidence levels at Training (F(2, 572) = 1.54, 
p = .22).  

Change Between Pre- and Post-Training. Did 
participants spontaneously notice inconsistencies between 
their Pre-Training and Training beliefs, and did that lead to 
change between Pre- and Post? Table 1 presents that Pre- and 
Post-Training performance by Condition. A 3 (Condition) x 
2 (Test) repeated measures ANOVA found a significant 
effect of Test (F(1, 572) = 29.30, p < .001, h2 = .05) and a 
significant Test x Condition interaction (F(2, 572) = 4.82, p 
= .008, h2 = .02). Next, I computed the simple effect of Test 
for each of the three conditions. As the inspection of Table 1 
suggests, only participants in the Warning (F(1, 572) = 20.90, 
p < .001, h2 = .04) and the Explicit Inference condition (F(1, 
572) = 17.90, p < .001, h2 = .03) changed their answers 
between Pre- and Post-Training and the change was in the 
direction of giving more answers consistent with Newtonian 
mechanics at Post-Training. There was no significant change 
in the Baseline condition (F(1, 572) =.35, p = .56, h2 = .001). 
In summary, although participants across all three conditions 
were confident in the bases of their Training TE outcomes, 
only those in the Warning and Explicit Inference conditions 
changed their Post-Training responses in the direction 
consistent with the Training TEs. It is important to note that 
the change between Pre- and Post in the Warning and the 
Explicit Inference conditions was not a result of changes on 
a small number of thought experiments between Pre- and 
Post-Training. A series of McNemar Chi Square tests showed 
a significant change in the number of participants who 
switched from impetus like responses at Pre-Training to 
Newtonian responses at Post-Training on all 4 TEs in both 
the Warning and Explicit Inference conditions (ps < .05), 
whereas there was no significant change on any of the TEs in 
the Baseline condition (ps > .22).  

 
 
 
 

 
 
 
 

 
Did the participants who accepted the relevance of the 

Training TEs for the Post-Training TEs in the Warning and 
Explicit Inference Conditions also change their confidence 
between Pre- and Post-Training? As reported above, 
participants were more confident in the bases for Training 
TEs than for Pre-Training TEs. If they used the Training TEs 
as a basis for their Post-Training decisions, then we should 
expect that their confidence will increase between Pre- and 
Post-Training. A 2 (Pre and Post Confidence) x 3 (Condition) 
repeated measures ANOVA found a significant effect of Pre- 
Post Confidence ((F(1, 572) = 31.35, p < .001, h2 = .05) and 
a significant Test x Condition interaction (F(2, 572) = 6.19, 
p = .002, h2 = .02). Next, I computed the simple effect of Pre- 
Post Confidence for each of the three conditions and found 
that the Confidence levels changed significantly only in the 
Warning (F(1, 572) = 30.19, p < .001, h2 = .05) and the 
Explicit Inference (F(1, 572) = 13.49, p < .001, h2 = .02) 
conditions, but not in the Baseline condition (F(1, 572) =.30, 
p = .58, h2 = .001). This pattern suggests that participants in 
the Warning and Explicit Inference Conditions relied on the 
Training TEs when reasoning about the Post-Training TEs, 
which led to increased confidence.  

Discussion  
Although many previous studies have shown that exposing 

learners to empirical data that contradict their beliefs leads to 
more exploratory behavior and more learning, to my 
knowledge, there have been no empirical studies that have 
tested whether pointing out inconsistencies in learners’ 
beliefs, via TEs, can lead to learning. The main goals of the 
present study were to: i) establish that thought experiments 
can be used to expose inconsistent beliefs within participants; 
and ii) establish whether scientifically naïve participants 
would notice those inconsistencies and change their beliefs. 
The first important and novel finding in the present study is 
that thought experiments can indeed be used to elicit 
inconsistent responses within individuals. I found that the 
very same people can give impetus like responses in one set 
of thought experiments and Newtonian responses in a 
different set of TEs. The second important finding is that 
participants did not spontaneously use the outcomes from the 
Training TEs in order to change their beliefs between Pre- 
and Post-Training, even though their confidence in the 
Training TEs was higher than that in the Pre-Training TEs. 
The third important finding is that pointing out the relevance 
of the Training TEs (Warning Condition) and providing the 
participants with an explicit inference that followed from the 
Training TEs (Explicit Inference Condition) resulted in belief 
revision between Pre- and Post-Training in a direction that 
was dictated by the higher confidence Training TEs.  

 Baseline C. Warning C. Explicit Inference C. 
Pre-Training 2.37 2.35 2.23 
Post-Training 2.43 2.75 2.61 
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These results are consistent with the view that thought 
experiments can be used to highlight contradictions among 
beliefs and that doing so may provide a context for belief 
revision in the service of conflict resolution, which may in 
turn motivate conceptual work and conceptual revisions 
(Kuhn, 1977). However, the evidence from the present study 
suggests that this happens only under certain circumstances. 
First, it is not sufficient to simply execute the TEs, as 
participants did in the Baseline Condition. That participants 
revised their beliefs in the other conditions suggests that in 
addition to executing the TEs, learners need to draw the 
relevant inferences (Explicit Inference Condition) and they 
need to compare those inferences side by side with the 
inferences following from the other TEs (Warning 
Condition). It is important to note, however, that even after 
going over these steps, not all participants who produced 
Newtonian responses at Training decided to change their 
beliefs at Post-Training. For example, even though 74% of all 
participants in the Explicit Inference condition agreed with 
the inference itself, at Post-Training they, on average, gave 
Newtonian responses only 65% of the time. This suggests 
that many of the participants who were giving impetus like 
responses on Pre- and Post-Training TEs and Newtonian 
responses on Training TEs either did not see any 
contradictions to be resolved or did not know how to resolve 
them. This is consistent with the literature showing how 
persistent naïve theories about physics are (Clement, 1982; 
Halloun & Hestenes, 1985; McCloskey, 1983).  

Could these results be explained by appealing to 
experimental demands, namely that participants changed 
their Pre-Training answers not because they understood 
something they did not understand before, but because they 
thought that that was the goal of the experiment. This is 
unlikely for several reasons. First, participants in the Baseline 
Condition also received the same Pre- and Post-Training TEs, 
with the Training TEs in between. Receiving the same 
questions twice could have been interpreted as a signal that 
they should change their answers the second time around. 
They did not. Second, in the Warning Condition participants 
were asked to consider the outcomes of the Training TEs 
when they reason about the Post-Training TEs. If they did not 
understand what the relationship between the two was, the 
change between Pre- and Post-Training could have gone in 
any direction (i.e., from impetus to Newtonian and vice 
versa). Similarly, in the Explicit Inference Condition, 
participants had to decide on their own whether they agreed 
with the inference that connected the Pre/Post TEs with the 
Training TEs. As in the Warning Condition, if they did not 
understand the connection, the change between Pre- and Post-
Training could have gone in either direction. Indeed, 25% did 
not agree with the inference.  

The Training TEs in the present study were designed to 
draw from perceptual-motor memories about the kind of 
forces we feel on our own bodies when we are on a vehicle 
that is moving at a constant speed. This design was employed 
in order to generate a high number of accurate Newtonian 
responses about which participants would be highly 

confident. As reported in this study, executing such thought 
experiments was not sufficient. What is not clear is whether 
the high-confidence, bodily aspect of the thought 
experiments is necessary. Would participants still improve if 
the Training TEs asked them to reason about other physical 
objects? Although the present study cannot answer this 
question, preliminary results from a follow-up experiment 
suggest that the answer is yes.  

In conclusion, the present study has shown that calling 
attention to inconsistencies in one’s belief system via thought 
experiments can lead to learning. Furthermore, it has shown 
that just bringing the inconsistencies to the surface in a form 
of explicitly stated beliefs, is not sufficient for learning to 
take place. Additional work is required in the form of drawing 
inferences that follow from certain beliefs and actively 
comparing those inferences with other currently held beliefs. 
This finding is important because on the one hand it shows 
something fundamental about our naïve theories and the 
tolerance we have for inconsistent beliefs, and on the other 
hand it points toward potential mechanisms that are necessary 
for resolving inconsistencies, and therefore necessary for 
theory refinement and learning.  
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