
Does Surprisal Predict Code Comprehension Difficulty?
Casey Casalnuovo (ccasal@ucdavis.edu), Prem Devanbu (ptdevanbu@ucdavis.edu)

Department of Computer Science, University of California, Davis
One Shields Avenue, Davis, CA 95616 USA

Emily Morgan (eimorgan@ucdavis.edu)
Department of Linguistics, University of California, Davis

One Shields Avenue, Davis, CA 95616 USA

Abstract

Recognition of the similarities between programming and nat-
ural languages has led to a boom in the adoption of language
modeling techniques in tools that assist developers. However,
language model surprisal, which guides the training and eval-
uation in many of these methods, has not been validated as
a measure of cognitive difficulty for programming language
comprehension as it has for natural language. We perform a
controlled experiment to evaluate human comprehension on
fragments of source code that are meaning-equivalent but with
different surprisal. We find that more surprising versions of
code take humans longer to finish answering correctly. We
also provide practical guidelines to design future studies for
code comprehension and surprisal.

Keywords: Code Comprehension; Language Model Surprisal;
Transformer Model

Introduction
As software has become nearly ubiquitous, people, even
those who do not consider themselves to be developers, in-
teract with code and learn to program. One of the largest
costs in software engineering comes from maintaining ex-
isting code (Banker et al., 1993); understanding code that
others have written (or returning to code a person has writ-
ten themselves) takes up a large portion of a programmer’s
time (Tiarks, 2011).

Though code comprehension research has a long history—
see Johnson & Soloway (1985); Mayer (2013) for early ex-
amples and Siegmund (2016) for a survey of the area—there
have been more recent calls by psycholinguists to explic-
itly understand the cognitive processes that drive program-
ming (Fedorenko et al., 2019). Code is often treated as just
another kind of language; people refer to teaching coding in
terms of “literacy” and describe its structure using terms from
linguistics such as grammar, syntax, and semantics. This ac-
knowledgment of the human communicative element of pro-
gramming is not new: Knuth’s Literate Programming empha-
sizes writing code not for machines, but for the benefit of
other developers (Knuth, 1984). While the degree to which
natural and programming language share cognitive processes
is unknown, recent work has shown some regions of the brain
used in natural language processing are also used in program-
ming (Siegmund et al., 2014). In contrast, eye-tracking stud-
ies have shown people read code differently than natural lan-
guage; their eyes jump around non-linearly, and this effect
increases with experience (Busjahn et al., 2015).

Appreciation of the similarities and differences between
natural and programming languages has led to the adoption
of computational language models for code. Language mod-
els operate by learning probability distributions over text, and
key to training these models is the notion of surprisal. The
surprisal of a token is its negative log probability in context as
captured by the language model1. Programming language is
more repetitive and has lower surprisal than natural language,
i.e. language models find code more predictable than natural
language (Hindle et al., 2012). Moreover, this finding holds
across many natural and programming languages, and some
of this is contingent on human choices, above and beyond
that which would be expected by inherent differences in lan-
guage structure (Casalnuovo, Sagae, & Devanbu, 2019). This
potentially makes language models even more effective in a
source code context and has led to their adoption for many
applications. These applications include automatic comple-
tion of code, finding defects and errors, or generating doc-
umentation from code, all of which are tools making a real
impact—see Allamanis et al. (2018) for an extensive survey.
These tools often leverage language model surprisal during
training; by minimizing surprisal they are assumed to be bet-
ter models of source code.

Though these tools and methods have obtained wide ac-
ceptance, the underlying measure of surprisal used by lan-
guage models has thus far seen very little validation as re-
lating to what makes code “better” for humans. This lack
of testing of assumptions and validating tools is a longstand-
ing problem for code comprehension (Siegmund, 2016). For
example, often times when assessing code readability, exper-
iments have relied on developers’ perception of code, which
may not be representative of how easy the code is to actu-
ally understand (Scalabrino et al., 2017). In natural language,
the relationship between language model surprisal and cogni-
tive load is fairly established; higher surprisal leads to higher
load (Levy, 2008; Smith & Levy, 2013), but this is not true for
code. Surprisal’s impact in natural language and the evidence
that human choices influence surprisal in code (Casalnuovo,
Lee, et al., 2019; Casalnuovo, Sagae, & Devanbu, 2019) are
suggestive of surprisal having an impact on human compre-
hension of code, but this still must be demonstrated.

1This is closely related to entropy, which is the expectation of
surprisal.

564
©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).

In code, this relationship is complicated by developers
needing to simultaneously write code for two ‘audiences’—
one audience is the machine, which obtains precise seman-
tics through execution, and the other audience is other hu-
mans. These effects intermingle in complex ways, with some
elements of code, such as variable names, whitespace format-
ting, or parentheses use typically possessing no meaning for
the formal algorithmic channel that the machine processes;
these elements communicate only to other humans (Casaln-
uovo et al., 2020).

Thus, for code, two expressions can have identical com-
putational meaning (i.e. the meaning obtained by the ma-
chine when executing the code) but be written in different
ways. For example, consider the statement a = b/c∗d;. This
could be equivalently written as a = (b/c) ∗ d;, which clari-
fies the order of operations to the developer, but has no effect
on the meaning to the machine. Similarly, consider how the
common code idiom for incrementing is usually written as
i= i+1; and almost never as the entirely equivalent i= 1+ i;.
Developers may choose to write one over the other due to ei-
ther readability concerns or possibly the pressures of existing
style or convention.

This feature enables opportunities to explore surprisal in
code via controlled experiments. By looking at source code
snippets with different surprisal, but equivalent meaning, we
can test hypotheses about whether surprisal can measure the
readability and understandability of source code. Most re-
lated to this study is our previous work (Casalnuovo, Lee, et
al., 2019), which looks at the relationship of human prefer-
ence and surprisal. In that study, humans tended to prefer
code with lower surprisal in a forced-choice experiment be-
tween two lines with different surprisal but identical compu-
tational meaning. We use a similar methodology and trans-
formations in this study.

In contrast to the preference study, here we consider how
surprisal influences human comprehension of source code.
One way to measure if someone understands code is if they
can execute it: given some input can they correctly describe
the output? If we have two snippets of source code with
equivalent meaning but different surprisal, we can ask hu-
mans to compute the outcome of each of them. We ask two
primary research questions to see how easily they understood
each variant: how accurately do humans compute the answer,
and how quickly do they correctly compute the answer?

Methodology
Materials
Data To develop meaning-equivalent source code frag-
ments, we first train a language model to predict the sur-
prisal of code. Our training and test data come from the 1000
most starred Java open source projects on Github (https://
github.com/). From this set, we selected a smaller sample
of the 30 Java projects with the most opportunities to perform
meaning preserving transformations. We split these into 21
and 9 projects for the training and testing set, chosen ran-

domly, with some preprocessing to remove potentially dupli-
cate or highly similar files by removing those with identical
filename and parent directories.

Language Model Training We use a Transformer
Model (Vaswani et al., 2017) with Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) to train the model and obtain
surprisal scores for each line. BPE creates subtokens of
roughly similar frequency from the tokens, reducing vocab-
ulary size to 9165 subtokens. Code has a larger vocabulary
than natural language, which makes training with neural
models difficult, and BPE has proven effective at addressing
this vocabulary size problem (Karampatsis et al., 2020). This
model is implemented in TensorFlow (Abadi et al., 2016),
using 2 layers and dimensions of 512 for the attentional and
feedforward layers, 8 attention heads, and a dropout rate of
0.1. We train for 10 epochs, with learning rate 0.2, a batch
size of 15000, and 200 tokens per sequence.

Table 1: Pseudocode examples of transformations. The first
column shows the general type of operation, second lists the
operators involved, and the last two show an example.

Swap
Arithmetic

* a * b b * a
+ a + b b + a

Swap
Relational

==, != a != b b != a
<, <=, >, >= a <= b b >= a

Adding Parentheses a + b * c a + (b * c)
Removing Parentheses a + (b * c) a + b * c

Meaning-Preserving Transformations We use 4 cate-
gories of meaning-preserving code transformations. Table 1
shows all our transformation with examples in pseudocode.
At the top, we have two types of operations swapping around
arithmetic and relational operators. For the arithmetic swaps,
we look at + and ∗ operations, which are commutative, and
conservatively swap only in cases using numerical variables
and literals, avoiding expressions with functions as they may
contain side effects that change code meaning. For relational
operators, we swap the operands around ==, ! =, >, >=,
<, and <=. If the relation is not symmetric (less and greater
than variants), we also invert the operator when swapping to
maintain precise meaning. We also add and remove parenthe-
ses that are not essential to the meaning of the code, but are
often added by developers for readability. These examples
appear in the bottom two rows of Table 1.

Experimental Materials Selection and Validation We se-
lected a total of 64 pairs of original and transformed lines of
code (16 from each transformation) to present to study par-
ticipants. We used a combination of initial random sampling
and then manual selection, creating a set of pairs where half
the time the transformation decreased surprisal relative to the
original line, and half the time it increased surprisal. In the
first phase, we randomly sampled 64 examples from the test
set for each transformation. These samples came from be-

565

yond the median in both the positive and negative direction
to ensure pairs had large surprisal differences. This initial
sample was filtered to automatically exclude expressions that
were likely to be automatically generated (e.g. hashes), con-
tained rare operations (like bit shifts), were overly easy (com-
parisons to null or 1), or were over 80 characters long. From
this initial set we manually selected 16 samples per trans-
formation, so that no 2 examples would be too similar, and
avoided samples that required too much contextual informa-
tion (such as calls to anything but the most basic functions,
like size() on a list).

Next, we artificially created concrete values to initialize all
variables used in the expression. These initializations were
used for both versions of the expression, and if there was
more than 1 variable to initialize, the order was randomized.
We used simple initializations for the variables in each ex-
pression, to reduce cognitive overhead, but also such that par-
ticipants would have to evaluate the entire expression. Once
these initializations were generated, we ran the code for each
of the 64 pairs to verify the correct answer and that they were
equivalent. Figure 1 shows an example of initialization and a
pair of snippets.

int width = 7;
int x = 3;
// Original Source Code
if(x >= width / 3 * 2) {
// Transformed Source code
if(x >= 2 * width / 3) {

Figure 1: Example initialization and expression pair. Partic-
ipants saw only one of the pair (without the Original/Trans-
formed label) and the question: ”Does the expression evaluate
to true or false?”

Procedure
Our experiment consists of presenting each subject with 32
randomly chosen samples from our 64 pairs, sampling across
transformations from all types. Subjects are randomly shown
only 1 variant of the pair, to prevent any learning effect from
seeing both versions. For each sample, the subject is first
shown the variable initializations for 3 seconds, after which
they can advance the page to see the expression that uses them
in addition to the initializations.

Then, they are asked to mentally compute the value of
the expression after execution. Tasks included computing a
numerical value, determining whether a boolean expression
was true or false, or determining how many times a for loop
would execute. For numerical questions, respondents entered
the value in a text box, and for boolean values they choose be-
tween true/false buttons. For text questions the cursor began
in the text box, and true/false questions could be answered
with the ‘t’ and ‘f’ keys, enabling subjects to complete the
experiment entirely using their keyboard.

During the experiment, we measured both answer cor-
rectness and response time. Correctness is straightforward,

though we give credit for similar answers (i.e. “8” counts for
a question with a floating-point answer of “8.0”). For tim-
ing, we used the high precision timing Javascript library Per-
formance2 to record the timing of every keystroke and click
involving the text box or answer buttons. Using these times
we constructed two response variables of interest: First Ac-
tion Time and Last Action Time. Respectively, these are the
first and last times the subject interacts to answer the ques-
tion (whether by click or keystroke), excluding the final click-
/keystroke to submit their answer. We tried two different tim-
ing measures as we were uncertain which would be most ap-
propriate for this type of code comprehension experiment due
to lack of prior literature. We hope the results here will help
guide such experiments in the future.

We presented the survey to workers on Amazon’s Mechani-
cal Turk3. To qualify for the main experiment, subjects had to
pass a 3 question Java code comprehension task. Answering
all 3 questions correctly allowed them to choose to continue
to the main task. After the subjects completed the main task,
there was an optional demographics survey and a couple of
open-ended feedback questions. At the end, they were pre-
sented their overall score on the main task, and we exclude
from data analysis any response that received a score of less
than 20 out of 32.

Participants
We restricted our participants to workers on Mechanical Turk
who had 1000 or more hits, a 99% or greater acceptance
rate, and were from the US or Canada. We also used Unique
Turker4 to avoid duplicate attempts. In total, we had 343 at-
tempts on the qualification task, and 116 full completions of
the main task with 111 scoring 20 or higher.

The subjects reported age with mean 32.2 and s.d. 8.8
years, Java experience with mean 10.5 and s.d. 5.3 years, and
took 34.2 minutes on average with s.d. 14.3. About 67% pro-
grammed at least a few times a week and most of the rest at
least a few times a month. Almost all participants had at least
at some college education, with over 50% having a Baccalau-
reate degree. Most use Mechanical Turk as an extra source of
income. We paid $1 to everyone who took the qualification
(pass or fail), and an additional $4 to everyone who completed
the main task, regardless of their score.

Results
Statistical Analysis
We have 3 primary response variables of interest, 1) a binary
variable for whether the respondent answered the question
correctly, 2) their First Action Time in seconds, and 3) their
Last Action Time in seconds. Our primary explanatory vari-
able for surprisal is a binary value which is 0 if this variant
was the less surprising version or 1 if it is the more surprising

2https://developer.mozilla.org/en-US/docs/Web/API/
Performance

3https://www.mturk.com/
4https://uniqueturker.myleott.com/

566

version. We analyze our data using mixed-effects regression
models. Our full models contain fixed effects for which of
the 4 transformation types a question was, and whether the
question was a text box or true/false question. We also con-
sidered interaction effects for each of these with the surprisal
value. Our random effects are the maximal structure justified
by the design (Barr et al., 2013); for items, we have a random
intercept and a slope for surprisal; for subjects, a random in-
tercept and slopes for surprisal, transformation type, question
type, and their interactions. We use deviation coding for all
categorical variables; each coefficient is in comparison to the
grand mean. Therefore, for example, the regression formula
for our full model using the binary measure for Last Action
Time is as follows: Last Action Time ∼ Surprisal*(TransType
+ QuestionType) + (1 + Surprisal*(TransType + Question-
Type)|ResponseID) + (1 + Surprisal|Question). The correct-
ness models were logistic regressions, and the timing models
were lognormal, as we observed that fit the distribution of
the response well. We fit these models using the brms pack-
age for bayesian regression, using default priors (Bürkner,
2017). We also tested each of these full models against sim-
pler ones to check robustness, using WAIC scores to compare
them (Watanabe, 2010). When the simpler models have qual-
itatively similar results to the full models, but much better
WAIC scores, we present the simpler models.

As these experimental methods have not typically been ap-
plied to code, we additionally want to explore best practices
for these types of experiments, so we also considered our data
in a few other ways. We considered our models with and
without timing outliers (cases where subjects answered more
than 3 standard deviations away from the mean of first and
last action time), but observed that they had minimal impact,
so we present the models with outliers. We also modeled the
text answer and true/false questions separately, after observ-
ing different behavior from these questions in our models and
plots. Supplementary materials, data, and R notebooks show-
ing models and plots not included in results are available at:
https://doi.org/10.5281/zenodo.3626129

Timing and Surprisal

Table 2: Fixed effects for bayesian mixed-effects lognormal
regression comparing if a variant was more or less surpris-
ing against the Last Action Time. WAIC scores suggested the
model without interactions was best.

Estimate Error 1-95% CI u-95% CI
Intercept 3.08 0.06 2.96 3.20
Surprisal 0.07 0.02 0.02 0.12
AddParen 0.09 0.09 -0.08 0.26
Arithmetic -0.20 0.09 -0.37 -0.03
Relational 0.02 0.09 -0.17 0.19
Text 0.15 0.05 0.04 0.26

First, let’s consider the question of whether more surprising
code takes longer for humans to comprehend. We will focus

primarily on Last Action Time, as the effects were larger and
more significant than First Action Time. Figure 2a shows the
median time difference for Last Action Time plotted against
the difference in surprisal. Note that though the models and
analysis presented here and for the correctness results operate
on the full data with random effects, the figures show summa-
rized versions of the data with simple regression lines to aid in
visualizing the data. These simplified models trend upwards
as predicted; participants tended to answer questions about
the more surprising code variant more slowly.

Now, to see if these effects are significant, we present the
results of our mixed-effects models which account for the
variance of the questions and subjects. We will discuss the
Last Action model in detail in Table 2, and then briefly men-
tion the First Action Time model. Surprisal has a significant
effect, and as the regression is lognormal, we can interpret
the average variant with lower surprisal taking 21.8 seconds
and with higher surprisal taking 23.3 seconds. Looking at
the other coefficients, we see significant differences on arith-
metic questions and on text questions, with arithmetic being
significantly faster and text questions significantly slower. In
comparison to this model, the estimated surprisal coefficient
for the First Action Time model with the best WAIC score is
0.06 with 95%-CI (0.00, 0.11). The effect is suggestive, but
not large enough to conclude significance.

When we divide our data to look at the text and true/false
questions separately in models, we see that the effect is less
significant for the true/false models, but much more so in the
text models. The text questions exhibit larger effects; in fact,
for the text questions only both first and last action time show
significant effects of surprisal: 0.12 with CI (0.01, 0.23) for
the first action model and 0.14 with CI (0.07, 0.21) for the last
action model. However, when modeling the true/false ques-
tions only, the effects are no longer significant - both contain
0 within their credible intervals. Figure 3a shows these trends
with summarized data using simple regression models.
Case Studies Some transformations lead to drastic changes
in the time to answer correctly. Using the difference in
median Last Action Time, we present the most extreme
examples for and against our hypothesis that higher surprisal
leads to longer mental computation. For the most extreme
example that agreed with our theory, we saw an increase of
22.5 seconds when changing time -= hours * 60 * 60;
to time -= 60 * hours * 60;. The language model
preferred the original in this case. The most extreme
change in the direction opposite to what is predicted
by our theory also happened when the language model
gave lower surprisal on the original, but the trans-
formation proved much easier to comprehend. After
adding parentheses around step >= minStep in the line
for(int i = 0; i < _maxfev && step >= minStep;
++i, step *= _stepDec), subjects were able to correctly
determine how many times the loop executed a median of
26.1 seconds faster. We theorize that the unusual nature
of this loop construction might explain why surprisal and

567

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

Relational Swap Removing Parentheses

Adding Parentheses Arithmetic Swap

−25 0 25 50−25 0 25 50

−20

−10

0

10

20

−20

−10

0

10

20

Transformed − Original Surprisal (bits)

T
ra

n
s
fo

rm
e
d
 −

 O
ri

g
in

a
l
L
a
s
t
A

c
ti
o
n
 (

S
e
c
o
n
d
s
)

(a) Median Last Action Time vs Surprisal Difference

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

Relational Swap Removing Parentheses

Adding Parentheses Arithmetic Swap

−25 0 25 50−25 0 25 50

−0.6

−0.4

−0.2

0.0

0.2

−0.6

−0.4

−0.2

0.0

0.2

Transformed − Original Surprisal (bits)

T
ra

n
s
fo

rm
e
d
 −

 O
ri

g
in

a
l
C

o
rr

e
c
tn

e
s
s

(b) Correctness vs Surprisal Difference

Figure 2: Per question pair plots of a) last action time and b) question accuracy differences against the difference in surprisal
between the transformed and original code broken down by each of the 4 transformations. For the x-axis on each plot, further
left indicates when the original code is more surprising, and further right means the transformed code is more surprising. For
a), the y-axis plots the difference in median time between the two; smaller values (below 0) indicate that questions about the
transformed code were answered more quickly. For b) the y-axis plots the difference in the fraction of correct answers. Higher
values mean more people correctly answered questions about the transformed code.

comprehension were unaligned in this case. Regardless,
these examples show that small line-level transformations
can substantially change comprehension time.

Accuracy and Surprisal

For our mixed-effects model of correctness, the best model
judging by WAIC scores was a model with no interactions
that excluded the transformation type as a categorical vari-
able. The binary surprisal coefficient was -0.21, suggesting
a negative trend between surprisal and correctness. However,
the 95% credible interval on this coefficient was (-0.56, 0.15).
As this interval is wide and includes 0, we cannot conclu-
sively say that the effect is significant, though it is at least in
the expected direction. Graphically, we express this trend in
Figure 2b, comparing the accuracy against the surprisal dif-
ference, summarized for each question.

As in the timing models, there is a significant difference
between the text and true/false questions, so we divide the
data and model them separately. We see that the effect is
even less significant for the true/false models, but more so in
the text models. The coefficient for surprisal for the text-only
model is -0.37, but the 95% credible interval still contains
0 (-0.87, 0.11). Figure 3b shows a summarized plot of these
trends. Therefore, we can at best say the effects are suggestive
but not conclusive for correctness; further study is needed to
link surprisal and comprehension accuracy.

Case Studies As with timing, we present the most ex-
treme cases for and against our hypothesis that higher
surprisal means fewer correct responses for the questions.
For an example of the largest change in the expected
direction, we swapped the operands in the expression
res[numstart + i] += scale * numVals[i]; to change

it to res[numstart + i] += numVals[i] * scale;.
The transformed code had lower surprisal, and it im-
proved the percent of correct answers from 55.5% to
89.2%. In this case, we theorize that grouping the
array accesses together might have made the men-
tal computation easier. The most extreme change in
the unexpected direction was the transformation from
return (2.0 / sampleSize) * (prediction - lb);
to return 2.0 / sampleSize * (prediction - lb);.
The transformation had lower surprisal, but 93.1% of our
subjects correctly computed the original code and only 57.1%
did so for the transformed version. Perhaps the lack of paren-
theses made the order of operations between the divide and
multiply operations unclear. Therefore, as with comprehen-
sion time, we can find examples where small transformations
have large impacts on correct comprehension.

Discussion
Does higher language model surprisal predict increased dif-
ficulty in processing code? Our experiment provides sugges-
tive but not definitive evidence for this effect. The clear-
est effects appeared in the models measuring the total time
to answer the comprehension questions; for models measur-
ing the first time the subjects interacted with the questions
and whether the question was answered correctly, the effects
trended in the predicted direction but were not significant.
Exploratory analysis beyond our main models showed these
effects were more pronounced when we only considered text
box questions and excluded true/false questions.

One may question whether such small changes to single
lines of code could really affect how easy they are for humans
to understand. However, our case studies demonstrated this

568

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Text Box Question True False Question

−25 0 25 50−25 0 25 50

−20

−10

0

10

20

Transformed − Original Surprisal (bits)

T
ra

n
s
fo

rm
e
d
 −

 O
ri

g
in

a
l
L
a
s
t
A

c
ti
o
n
 (

S
e
c
o
n
d
s
)

(a) Median Last Action Time vs Surprisal Difference

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

Text Box Question True False Question

−25 0 25 50−25 0 25 50
−0.6

−0.4

−0.2

0.0

0.2

Transformed − Original Surprisal (bits)

T
ra

n
s
fo

rm
e
d
 −

 O
ri

g
in

a
l
C

o
rr

e
c
tn

e
s
s

(b) Correctness vs Surprisal Difference

Figure 3: Per question pair plots of a) last action time and b) question accuracy differences against the difference in surprisal
between the transformed and original code broken down by each of 2 types of questions. For the x-axis on each plot, further
left indicates when the original code is more surprising, and further right means the transformed code is more surprising. For
a), the y-axis plots the difference in median time between the two; smaller values (below 0) indicate that questions about the
transformed code were answered more quickly. For b) the y-axis plots the difference in the fraction of correct answers. Higher
values mean more people correctly answered questions about the transformed code.

is not true by counterexample; we found cases where even
a small change could drastically alter how quickly and accu-
rately participants could answer questions. A single changed
parenthesis or reordered statement can lead to a misunder-
standing about some code’s meaning.

There may be additional factors explaining when surprisal
does or does not predict comprehension well. If language
models learn from past exposure, the alignment between sur-
prisal and comprehension may depend on the type and fre-
quency of similar expressions. For instance, in chess, hu-
man experts were able to more quickly comprehend and re-
member known configurations, but displayed ability little bet-
ter than novices when exposed to unusual random configura-
tions (Chase & Simon, 1973). Sorting out the relationship
of surprisal with frequency and other potential abstract fac-
tors could also be a promising future area of research, as both
have been shown to play a role in natural language prefer-
ence (Morgan & Levy, 2016). In more novel code expres-
sions, does surprisal relate to comprehension, and if so, what
factors might explain this connection?

Our experiment shows comprehension tasks are a viable
method of studying how people process code and provides
some recommendations for future studies. First, focus on
comprehension questions that require text entry answers.
True/false questions can be more easily guessed and might
be too simple to see the desired effects. Next, more difficult
questions or situations may show more significant effects. For
example, surprisal has also been used as a means to drive
code obfuscation (i.e. transforming code to make it harder to
interpret) (Liu et al., 2017). Though the authors of this pa-
per focused more on inhibiting machine learners than human
comprehension, establishing if surprisal driven obfuscation is

similarly effective on humans could help create better obfus-
cation tools for privacy and intellectual property protection.
In other contexts, we hope that as these effects are better
understood, it may be possible to use surprisal as a method
to guide automated tools modifying code to be more easily
understandable by humans without altering its computational
meaning. Such tools could include style recommendations or
parts of the code editor. Finally, methods of measuring read-
ability and comprehension of code may support more effec-
tive teaching of coding, establishing good code writing prac-
tices that are more understandable to existing programmers.

Acknowledgments
We would like to acknowledge the assistance of students and
postdocs who helped in testing and providing feedback on our
comprehension task, including Vincent Hellendoorn, Kevin
Jesse, Anand Sawant, Toufique Ahmed, and Skyler Reese.
We would also like to acknowledge the funding support of
NSF grant #1414172: SHF: Large: Collaborative Research:
Exploiting the Naturalness of Software.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., . . . others (2016). TensorFlow: A System for Large-
Scale Machine Learning. In OSDI (Vol. 16, pp. 265–283).

Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018).
A Survey of Machine Learning for Big Code and Natural-
ness. ACM Computing Surveys (CSUR), 51(4), 1–37.

Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D.
(1993). Software complexity and maintenance costs. Com-
munications of the ACM, 36(11), 81–95.

569

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013).
Random effects structure for confirmatory hypothesis test-
ing: Keep it maximal. Journal of Memory and Language,
68(3), 255 - 278.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson,
J. H., Schulte, C., . . . Tamm, S. (2015). Eye movements in
code reading: Relaxing the linear order. In Program Com-
prehension (ICPC), 2015 IEEE 23rd International Confer-
ence on (pp. 255–265).

Bürkner, P.-C. (2017). brms: An R Package for Bayesian
Multilevel Models Using Stan. Journal of Statistical Soft-
ware, 80(1), 1–28.

Casalnuovo, C., Barr, E. T., Dash, S. K., Devanbu, P., &
Morgan, E. (2020). A Theory of Dual Channel Con-
straints. In 2020 IEEE/ACM 42nd Internation Conference
on Software Engineering: New Ideas and Emerging Re-
sults (ICSE-NIER).

Casalnuovo, C., Lee, K., Wang, H., Devanbu, P., & Morgan,
E. (2019). Do People Prefer “Natural” code? ArXiv,
abs/1910.03704.

Casalnuovo, C., Sagae, K., & Devanbu, P. (2019). Studying
the Difference Between Natural and Programming Lan-
guage Corpora. Empirical Software Engineering, 24(4),
1823–1868.

Chase, W. G., & Simon, H. A. (1973). Perception in Chess.
Cognitive Psychology, 4(1), 55–81.

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U.
(2019). The Language of Programming: A Cognitive Per-
spective. Trends in Cognitive Sciences, 23(7), 525–528.

Hindle, A., Barr, E. T., Su, Z., Gabel, M., & Devanbu, P.
(2012). On the Naturalness of Software. In Proceedings of
the 34th International Conference on Software Engineer-
ing (pp. 837–847). Piscataway, NJ, USA: IEEE Press.

Johnson, W. L., & Soloway, E. (1985). PROUST:
Knowledge-Based Program Understanding. IEEE Trans-
actions on Software Engineering(3), 267–275.

Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C., &
Janes, A. (2020). Big Code!= Big Vocabulary: Open-
Vocabulary Models for Source Code. In 42nd International
Conference on Software Engineering (ICSE ’20). ACM.
doi: https://doi.org/10.1145/3377811.3380342

Knuth, D. E. (1984). Literate Programming. The Computer
Journal, 27(2), 97–111.

Levy, R. (2008). Expectation-based syntactic comprehen-
sion. Cognition, 106(3), 1126 - 1177.

Liu, H., Sun, C., Su, Z., Jiang, Y., Gu, M., & Sun, J. (2017).
Stochastic Optimization of Program Obfuscation. In Pro-
ceedings of the 39th International Conference on Software
Engineering (pp. 221–231).

Mayer, R. E. (2013). Teaching and Learning Computer Pro-
gramming: Multiple Research Perspectives. Routledge.

Morgan, E., & Levy, R. (2016). Abstract knowledge versus
direct experience in processing of binomial expressions.
Cognition, 157, 384–402.

Scalabrino, S., Bavota, G., Vendome, C., Linares-Vásquez,
M., Poshyvanyk, D., & Oliveto, R. (2017). Automatically
Assessing Code Understandability: How Far Are We? In
Proceedings of the 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (pp. 417–427).

Sennrich, R., Haddow, B., & Birch, A. (2016, August).
Neural Machine Translation of Rare Words with Subword
Units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers) (pp. 1715–1725). Berlin, Germany: Associ-
ation for Computational Linguistics.

Siegmund, J. (2016). Program Comprehension: Past, Present,
and Future. In 2016 IEEE 23rd International Confer-
ence on Software Analysis, Evolution, and Reengineering
(SANER) (Vol. 5, pp. 13–20).

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A.,
Leich, T., . . . Brechmann, A. (2014). Understanding Un-
derstanding Source Code with Functional Magnetic Reso-
nance Imaging. In Proceedings of the 36th International
Conference on Software Engineering (pp. 378–389).

Smith, N. J., & Levy, R. (2013). The effect of word
predictability on reading time is logarithmic. Cognition,
128(3), 302–319.

Tiarks, R. (2011). What Maintenance Programmers Really
Do: An Observational Study. In Workshop on Software
Reengineering (pp. 36–37).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., . . . Polosukhin, I. (2017). Attention Is All
You Need. In Advances in Neural Information Processing
Systems (pp. 5998–6008).

Watanabe, S. (2010). Asymptotic Equivalence of Bayes
Cross Validation and Widely Applicable Information Cri-
terion in Singular Learning Theory. Journal of Machine
Learning Research, 11(Dec), 3571–3594.

570

