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Abstract 
 
Successful categorization requires a careful coordination of 
attention, representation, and decision making. Comprehensive 
theories that span levels of analysis are key to understanding 
the computational and neural dynamics of categorization. Here, 
we build on recent work linking neural representations of 
category learning to computational models to investigate how 
category decision making is driven by neural signals across the 
brain. We combine functional magnetic resonance imaging 
with hierarchical drift diffusion modelling to show that trial-
by-trial fluctuations in neural activation from regions of 
occipital, cingulate, and lateral prefrontal cortices are linked to 
category decisions. Notably, lateral prefrontal cortex activation 
was also associated with exemplar-based model predictions of 
trial-by-trial category evidence. We propose that these brain 
regions underlie distinct functions that contribute to successful 
category learning.  
 
Keywords: category learning, fMRI, computational 
modelling, EBRW, drift diffusion model  

Introduction 
Category learning, our ability to organize our experiences 
into meaningful concepts that can be leveraged in novel 
situations, is fundamental to the human experience. Not only 
are we able to group objects based on basic features such as 
colour and shape, but we are also capable of learning highly 
abstract and multivariate categories with relatively little 
practice. Besides commonplace categories such as “edible” 
and “friendly” and their antagonistic equivalents, objects can 
be assembled based on one or several complex perceptual 
features. Influential category learning models posit that novel 
objects are categorized according to their relative positions in 
a multidimensional psychological space populated with 
known category members in which the distance between 
objects determines their degree of similarity (Shepard, 1957). 
While this perceptual space can be composed of an unlimited 
number of dimensions, it is often the case that only some 
inform categorization decisions, and the weights of those few 
dimensions can vary (Nosofsky, 1986; Seger & Miller, 
2010). 

Although category learning has been studied for decades 
(Shepard, 1957; Young & Householder, 1938), more recent 
work has converged on a comprehensive account that 
formalizes the computational and neural mechanisms 
underlying successful learning (Zeithamova et al., 2019). 
While previous accounts of category learning feuded over the 

nature of concept representations (i.e., exemplar versus 
prototype), the multifactorial nature of concept learning has 
been found to implicate myriad neural systems. For instance, 
while lateral prefrontal cortex (LPFC) and parietal areas 
recruit specific category exemplars (Mack et al., 2013), the 
hippocampus and ventromedial prefrontal cortex inform 
representations based on category prototypes (Bowman & 
Zeithamova, 2018). In addition to similarity-based 
comparisons of representations, successful learning requires 
higher-order inferential processes, such as when faced with 
novelty or uncertainty invoked by a given stimulus (Paniukov 
& Davis, 2018). A comprehensive account must be able to 
link each of these processes; how these multiple brain 
systems interact remains to be defined. 

Much of this work has focused on the link between 
predictions of representations formed during learning and 
how task strategies can influence what is learned by 
combining sophisticated neural analyses with formal model 
predictions (Bowman & Zeithamova, 2018; Braunlich & 
Seger, 2016; Mack, Love, & Preston, 2016; Mack et al., 
2013). There is, however, a missing component: the decision 
making process itself. Limited work has explored the neural 
mechanisms that govern how category knowledge, once 
learned, is applied to novel situations to yield measurable 
behavioural changes in decision making. 

Investigating the neural processes of category decision 
making requires a computational theory of how such 
decisions unfold. The Exemplar-Based Random Walk 
(EBRW) model (Nosofsky & Palmeri, 1997) formalizes 
category decisions as an evidence accumulation process. 
Evidence in support of different categories is sampled over 
time through similarity-based retrieval of category exemplars 
motivated by the seminal Generalized Context Model (GCM) 
(Nosofsky, 1986). The key innovation of EBRW is its ability 
to predict both response probabilities and speed, thereby 
providing a comprehensive formal account of the behaviour 
underlying categorization decision making.  

Here, we leverage EBRW in an exploratory approach to 
identifying neural processes linked to categorization decision 
making. Our approach significantly extends prior work that 
has interrogated brain function with categorization models 
(e.g., Bowman & Zeithamova, 2018; Davis, Goldwater, & 
Giron, 2017; Mack et al., 2013) by 1) targeting neural 
response that fully characterizes decision responses and 
speeds, and 2) focussing on participant-specific predictions 
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through hierarchical model analyses. The EBRW model 
provides a strong theoretical framework for interpreting 
potentially informative neural processes; however, there are 
no analytic approaches for applying EBRW in a hierarchical 
manner that captures individual differences underlying 
common neural substrates at the group level in category 
decision making. As such, we split the two primary elements 
of EBRW—that is, exemplar-based category representations 
that drive an accumulation of noisy decision evidence—into 
a two-stage analytic approach: First, we interrogate neural 
signals related to decision making with a hierarchical variant 
of the drift diffusion model (DDM; Ratcliff, 1978), a 
computational model that approximates EBRW’s decision 
making mechanism. Second, we evaluate the correspondence 
between the identified brain measures and individually 
tailored predictions of the GCM, the model that EBRW’s 
exemplar-based category representations are based on. Since 
EBRW formalizes that category representations impact 
decision making through changes to the rate of evidence 
accumulation (Nosofsky & Palmeri, 1997) and that this sort 
of category evidence has been correlated with neural function 
in prefrontal and parietal cortices and striatum (Davis et al., 
2017), we focus on the drift rate parameter in the DDM.  

Thus, we test the hypotheses that brain activation during a 
classic categorization task (Mack et al., 2013; Medin & 
Schaffer, 1978) corresponds to the rate of category evidence 
accumulation on a trial-by-trial basis and that such neural 
decision signals may vary when category knowledge is 
generalized to novel relative to previously encountered 
stimuli. Given the exploratory nature of this approach 
(Thompson, Wright, & Bissett, 2020), we take a purposefully 
uninformed view of brain function. Specifically, we 
interrogate neural response from a parcellation of distinct 
regions across the whole brain independently identified in a 
large-scale, data-driven analysis of resting state interregional 
connectivity (Schaefer et al., 2018). This approach provides 
a key first approximation of how to identify neural function 
underlying complex human behaviour through the lens of a 
formal computational theory. 

Methods 
The current study leverages a previously published open-
access dataset (Mack et al., 2013). This dataset, which 
includes behavioural and structural and functional magnetic 
resonance imaging (fMRI) data, was downloaded from OSF 
(https://osf.io/62rgs/). For completeness, we include a full 
description of the methods for this experiment. 

Participants  
Twenty-three participants participated in the experiment. 
Two participants were removed prior to analysis for 
excessive head motion during fMRI scanning, and one 
participant was removed for failure to learn the categorization 
task. The remaining 20 participants were included in the 
primary analysis (age range of 19–33 years; mean age of 23.5 
years; 14 female). 
 

 

 
Figure 1: Stimuli and test performance. Stimuli 

composed of four binary dimensions were split into 
training (five A and four B items) and testing sets 

(example stimulus set shown in top row). Test 
performance showed typical accuracy (middle) and 
median reaction time (bottom) performance as in 

previous reports (e.g., Medin & Schaffer, 1978). Lighter 
dots depict participant-specific averages, darker dots 

depict group averages, and errors bars depict 95% 
confidence intervals. 

Stimuli 
The stimulus set was composed of 16 objects consisting of 
simple shapes enclosed in a grey, horizontally oriented 
rectangle (Figure 1). The simple shape varied based on four 
salient binary-valued features (colour: red or green, shape: 
circle or triangle, size: large or small, and position: right or 
left). For each participant, the four features were randomly 
assigned to the four dimensions defined by the 5/4 category 
structure (Medin & Schaffer, 1978). This structure is divided 
into two categories with the prototype member of category A 
corresponding to [0,0,0,0] and the prototype member of 
category B corresponding to [1,1,1,1]. Nine objects served as 
the training items with five for category A and four for 
category B. The remaining seven objects served as a test set. 

Procedures 
After an initial screening and consent in accordance with the 
University of Texas Institutional Review Board, participants 
were instructed on the category learning task. These 
instructions explained that the participant would be shown 
simple objects composed of different features and that the 
task was to learn which object belonged to one of two 
categories through corrective feedback.  

Participants performed the training phase of the experiment 
in a behavioural testing room. On each training trial, one of 
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the nine training stimuli was displayed for 3.5s and 
participants made a response to the stimulus’ category by 
pressing one of two labelled keys on the keyboard. Then, a 
fixation cross was presented for 0.5s, followed by a feedback 
display that presented the stimulus, the correct category, and 
whether the participant’s response was correct or incorrect 
for 3.5s. Trials ended with a 0.5s fixation cross. The nine 
training stimuli were presented 20 times in randomized order 
during the initial training outside the scanner. Participants 
also completed additional training trials inside the fMRI 
scanner during an anatomical scan as a refresher of the 
training items’ category membership. In total, across the 
entire training phase, participants completed 24 repetitions 
with each training stimulus. 

After training, participants performed the testing phase 
during functional scanning. On each test trial, one of sixteen 
stimuli (consisting of the nine training stimuli and seven 
novel transfer stimuli) was displayed for 3.5s and participants 
made a category response by pressing one of two buttons on 
an MRI-compatible button box. A fixation cross was then 
presented for 6.5s. No feedback was provided during the 
testing phase. The 16 stimuli were presented three times in 
randomized order during six functional runs for 18 total 
repetitions per stimulus. 

fMRI Data Acquisition and Preprocessing 
Whole-brain imaging data were acquired on a 3.0T GE Signa 
MRI system (GE Medical Systems). Structural images were 
acquired using a T2-weighted flow-compensated spin-echo 
pulse sequence (TR=3s; TE=68ms, 256x256 matrix, 1x1mm 
inplane resolution) with thirty-three 3-mm thick oblique axial 
slices (0.6mm gap), approximately 20° off the AC-PC line. 
Functional images were acquired with an echo planar 
imaging sequence using the same slice prescription as the 
structural images (TR=2s, TE=30.5ms, flip angle=73°, 64x64 
matrix, 3.75x3.75 in-plane resolution, bottom-up interleaved 
acquisition, 0.6mm gap). An additional high-resolution T1-
weighted 3D SPGR structural volume (256x256x172 matrix, 
1x1x1.3mm voxels) was acquired for registration and brain 
parcellation. 

Anatomical and functional MRI data for each participant 
were preprocessed using the fMRIPrep automated MRI 
workflow (version 1.0.15; Esteban et al., 2019), which 
included brain extraction, motion correction, coregistration 
between functional and T1 volumes, and normalization to the 
MNI 2009c asymmetric brain template. AROMA-identified 
noise components were regressed out of the functional 
timeseries. For each run, trial-level beta parameters were 
estimated from the functional timeseries across the whole 
brain using the LS-S approach (Mumford, Turner, Ashby, & 
Poldrack, 2012). Finally, beta estimates across trials were 
averaged within 100 regions of interest (ROI) as defined by a 
resting-state brain parcellation (Schaefer et al., 2018) and an 
additional eight ROIs from subcortical regions including 
right and left hippocampus, caudate, putamen, and thalamus. 

 

 
 

Figure 2: Brain parcellation and analysis schematic. A) 
Analyses targeted 108 brain ROIs derived from a data-

driven resting-state functional parcellation and 
anatomically-defined subcortical regions. B) Mean trial-by-

trial beta estimates within each ROI were extracted and 
leveraged to predict trial-by-trial changes in drift rate in 

DDM simulations of categorization decisions.   

Brain-informed Drift Diffusion Modelling 
DDM analyses were conducted by first averaging beta 
estimates within each ROI for each trial resulting in an ROI-
specific timeseries (Figure 2B). Separate DDM simulations 
were conducted for each ROI wherein trial-by-trial changes 
in drift rate, v, were linked to the ROI timeseries. Given the 
theorized relationship in EBRW between exemplar-based 
category similarity and the random walk accumulation of 
evidence (Nosofsky & Palmeri, 1997), we focused on the link 
between brain and drift rate in the DDM. The DDM 
formalizes other parameters that distinctly influence 
predictions of decision making behaviour (e.g., decision 
threshold, a, and non-response time, TER); however, the key 
prediction from EBRW we test here depends on drift rate. 
Additionally, the relationship between drift rate and ROI 
activation was allowed to vary by stimulus type (training vs. 
testing items). Simulations were implemented with the 
Hierarchical Drift Diffusion Model (HDDM) library 
(Wiecki, Sofer, & Frank, 2013), which performs hierarchical 
Bayesian parameter estimation. MCMC sampling was 
conducted for 20,000 samples with 10,000 burn-in and 
thinning set to 2. The deviance information criterion (DIC) 
for each ROI-based model was compared to a baseline model 
not linked to neural activation. ROI-based models with 
smaller DIC values differing from the baseline model by at 
least 10 were consider a significantly better fit (Spiegelhalter, 
Best, Carlin, & Van Der Linde, 2002). Parameter estimates 
from ROI-based models meeting this criterion were further 
explored by analyzing the posterior distributions of effects 
due to neural activation and stimulus type (training vs. testing 
items) on drift rate. Specifically, the probability of direction, 
pd, for each effect was calculated as the proportion of 
posterior samples in the most probable direction (i.e., pd 
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ranges from 0.5 to 1 with values closer to 1 for more likely 
effects). 

Linking Category Evidence and Neural Response 
Leveraging the HDDM provides a quantitative means for 
interrogating the link between neural activation and 
categorization decisions. In particular, finding that trial-by-
trial fluctuations in the neural activation of certain brain 
regions predicts behaviour suggests these brain regions are 
performing an important role in mapping sensory information 
onto category knowledge. However, the DDM is agnostic to 
specific mechanisms underlying computations of category 
evidence, thus it represents only one component of the 
broader EBRW framework.  

To test the hypothesis that the degree of evidence for one 
category over another is reflected in the neural dynamics of 
the identified ROIs, we performed an additional analysis that 
linked participant-specific cognitive model predictions of 
categorization to neural activation in the ROIs identified by 
the brain-informed DDM analysis. Specifically, we generated 
predictions of category evidence with the GCM (Nosofsky, 
1986). A key mechanism of GCM is selective attention, 
whereby diagnostic feature dimensions for a given task are 
weighted to varying degrees in calculating similarity to stored 
category exemplars and thus modulate the evidence for each 
category. It has been previously shown that individual 
differences in both categorization performance and neural 
representations (e.g., Mack et al., 2013; Braunlich & Love, 
2019) are related to attention weighting in the GCM. 

Thus, to quantify participant-specific predictions of 
category evidence, we fit to each participant’s behaviour by 
optimizing GCM parameters of dimensional attention 
weights (w) and sensitivity (c) with a genetic algorithm 
approach (differential evolution in scipy version 1.3.0) to 
maximize likelihood of response probabilities during the last 
block of training (Mack et al., 2013). Participant-specific 
optimized parameters were then leveraged to predict for each 
stimulus the degree of discriminatory evidence (ev) for the 
most probable category. This measure of category evidence 
for stimulus x is the absolute value of the difference between 
the summed similarity for category A and B: 

  

𝑒𝑣! =	 %&𝑒"# ∑ %|!!"'!|!∈#

'∈)

−&𝑒"#∑ %|!!"'!|!∈#

'∈*

% 

 
where d is the set of feature dimensions, A and B are the set 
of training items in the two categories, w is the set of 
optimized dimension weights, and c is sensitivity. We then 
evaluated the relationship between category evidence (ev) 
and trial-by-trial neural activation with a mixed effects linear 
regression. Specifically, category evidence was modelled as 
the response, neural activation as the predictor, and random 
intercepts were included for participants. Given that category 
evidence is exponentially distributed, a log link function was 
included in the regression model. Regression analyses were 
conducted with Bayesian estimation (rstanarm R package 

version 2.19.2). Neural activation models were compared to 
a baseline model that only included random intercepts. 

Results 
Testing phase performance (Figure 1) showed typical results 
consistent with previous reports (e.g., Medin & Schaffer, 
1978). Responses to A and B training items demonstrated 
clear learning that was retained during test. Responses to 
novel test items varied according to match to category 
exemplars as determined by each participants’ learning 
performance (Mack et al., 2013). Median reaction times 
(RTs) at the group level did not vary across items; however, 
there was variability across participants and trials. The brain-
based DDM analysis offers a means for accounting for trial-
by-trial variability in response choices and times with neural 
function. 

 

 
 

Figure 3: Brain regions linked to category decisions. DDM 
models informed by neural activation from occipital (red), 

mid cingulate (blue), and lateral PFC (green) each 
accounted for category decisions significantly better than 

the baseline model not informed by brain signals. 

Brain Regions Related to Category Decisions 
Across the brain, only six of the tested ROIs showed brain-
informed HDDM predictions with significantly better 
accounts of category decisions relative to the baseline model. 
Interestingly, these six ROIs were composed of three pairs of 
adjacent regions, with each pair showing similar effects. To 
simplify presentation of the results and to best reflect the 
nature of their similar effects, we combined these pairs into 
three ROIs (Figure 3): an occipital region including 
extrastriate cortex, a region of midcingulate cortex, and a 
region of left lateral prefrontal cortex (PFC) extending into 
insula. HDDM simulations of these combined ROIs 
demonstrated significantly lower DICs (occipital: 6,712.9, 
mid cingulate: 6,713.5, lateral PFC: 6,711.5) relative to 
baseline (6,725.3). 

Although these three regions demonstrated similar overall 
fits to behaviour, the nature of the relationship between ROI 
activation and drift rate was unique across ROIs (Figure 4). 
In the occipital ROI, neural activation was positively related 
to drift rate but only for test items (pdtrain = 0.8, pdtest = 0.998). 
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In mid cingulate, neural activation was negatively related to 
drift rate but only for training items (pdtrain > 0.999, pdtest = 
0.676). Finally, the lateral PFC region showed a negative 
relationship between neural activation and drift rate for both 
stimulus types (pdtrain = 0.997, pdtest = 0.985). 

 
 

 
 

Figure 4: Effects of neural activation on drift rate. Posterior 
predictions of drift rate as a function of ROI activation (top: 

occipital, middle: mid cingulate, bottom: lateral PFC) 
separately for training (purple) and test (orange) stimuli are 
shown on the left. Posterior distributions of the activation 

effects on drift rate for training and test stimuli relative to 0 
(dotted line) are shown on the right. Shaded regions 

represent 95% prediction intervals.  

Category Evidence in Neural Activation 
The key prediction of EBRW follows that category decision 
making is driven by similarity-based comparisons to category 
exemplars. Extending this hypothesis to neural function, it 
follows that brain regions key for category decision making 
will exhibit activation profiles that track category evidence. 
To test this prediction, we evaluated the association between 
category evidence, as derived from GCM-based model fits of 
learning behaviour, and neural activation in the DDM-
identified brain regions. 

Of the three ROIs, only lateral PFC showed a significant 
relationship with model-based predictions of category 
evidence (Figure 5; R2 = 0.145) with higher lateral PFC 
activation associated with less discriminatory category 
evidence (β = -0.004, CI = [-0.007, -0.001], pd = 0.987). 
These findings support the hypothesis that lateral PFC 
activation fluctuates as a function of category evidence 
(Paniukov & Davis, 2018) and that this category evidence 
plays a role in the accumulation of evidence in category 
decisions (Nosofsky & Palmeri, 1997). 

 

 
Figure 5: Relationship between lateral PFC activation and 

GCM-predicted category evidence. Shaded ribbon and 
regions depict 95% prediction intervals. 

Discussion 
By integrating a formal category decision making model, 

EBRW, with whole-brain neural measures, we demonstrate 
that activation in specific brain regions relates to the trial-by-
trial dynamics of category decisions. Specifically, we found 
that activation in LPFC was associated with category 
decisions and the speed of those decisions. Notably, trial-by-
trial activation in this region also related to exemplar-based 
predictions of category evidence. In both cases, the link to 
LPFC activation was an inverse relationship: higher 
activation was accompanied by slower decisions and less 
category evidence. These findings support an account of 
LPFC engagement tied to the difficulty of the current 
category decision, such that LPFC is recruited to resolve 
conflicts and help drive decision making in ambiguous 
circumstances. 

The LPFC has been previously reported to be involved in 
a variety of tasks consistent with this interpretation. Monkey 
studies suggest that neurons in LPFC are sensitive to 
multidimensional feature representations (Mendoza-Halliday 
& Martinez-Trujillo, 2017) and code for category boundaries 
(Seger & Miller, 2010). Additionally, human work points to 
a specific role for LPFC in the control of memory retrieval, 
particularly in the face of ambiguity and competing 
information (e.g., Badre & Nee, 2018; Thompson-Schill et 
al., 1998). These prior results portray the LPFC as the 
recipient of perceptual information, to which it applies 
representations of category structure to guide and drive 
category decisions. When the perceptual representations 
provide less obvious category distinctions, an increase in 
activation may be indicative of a greater amount of cognitive 
effort required to make a decision.  

Recent work has isolated the distinct contribution of 
subregions of LPFC, namely rostrolateral PFC (RLPFC), to 
categorization. It has been proposed that RLPFC is involved 
in tracking higher-order relations between object features, 
while other LPFC regions drive the decision making process 
more generally (Davis et al., 2017). For instance, a recent 
study of category decision making has determined that the 
RLPFC engages in comparisons of dissimilarity between 
exemplars, signalling its involvement in highly abstract 
category learning processes, while DLPFC is activated in 
cases of uncertainty when there is less similarity-based 
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evidence available to inform a category decision (O’Bryan, 
Worthy, Livesey, & Davis, 2018). Furthermore, RLPFC has 
been shown to continually evaluate categorization rules, even 
if the correct strategy has been arrived at (Paniukov & Davis, 
2018). Therefore, when less information is provided by 
perceptual representations, or when the categorization 
decision is not obvious enough to rely on earlier cortical 
areas, LPFC is engaged to compare the current stimuli to 
previous exemplars according to task-specific goals. By 
directly linking trial-by-trial neural signals from LPFC to 
category decision making and the expression of exemplar-
based category knowledge, our findings uniquely support the 
notion that LPFC is tracking category evidence in a 
behaviourally-relevant manner (O’Bryan, Walden, Serra, & 
Davis, 2018) akin to the mechanisms of EBRW (Nosofsky & 
Palmeri, 1997). 

Although occipital and mid cingulate regions were not 
associated with model-based predictions of category 
evidence, activation in these regions did exhibit distinct 
relationships with evidence accumulation as formalized in 
the DDM. In occipital cortex, decision-related activation was 
restricted to novel test items, such that higher activation was 
accompanied by quicker and more accurate responses. Prior 
studies support the notion of concept representation in 
perceptual cortices. Specifically, it is thought that recurrent 
feedforward/feedback loops with medial temporal lobe and 
PFC allow visual regions to make inferences about stimulus 
features (Hindy, Ng, & Turk-Browne, 2016; Lee & 
Mumford, 2003). Moreover, occipital regions respond to the 
similarity between particular stimuli and category 
representations (Braunlich & Love, 2019), as well as 
demonstrating an increase in activation in category-relevant 
visual areas (Folstein et al., 2013). Thus, the link between 
occipital activation and decision making we observe may be 
due to the engagement of neural representations tuned to 
diagnostic visual dimensions. It follows that this neural 
tuning may be most helpful and, therefore, recruited when 
generalizing to new stimuli. 

Although the inclusion of the mid cingulate cortex (MCC) 
also improves DDM predictions, its potential role in this 
category learning paradigm is less clear. The relationship 
between MCC activation and drift rate was restricted to 
trained items, such that lower activation was associated with 
higher drift rates. While this relationship resembles that of the 
one observed in the LPFC, perhaps suggesting a role in 
encoding category rules during training trials, the lack of any 
association for testing trials is puzzling. In the absence of 
feedback, it may be that the MCC serves as a mere conduit 
between posterior and anterior cortical regions (Yarkoni, 
Poldrack, Nichols, Van Essen, & Wager, 2011). 

A comprehensive account of category learning requires an 
understanding of the dynamics of attention, representation, 
and decision making both at the level of computational and 
neural processes. Here, we build on recent advances that link 
computational model predictions of category representations 
to neural coding (Mack, Love, & Preston, 2018; Zeithamova 
et al., 2019) to isolate the neural signals of category decision 

making. We also extend methods of linking brain and 
behaviour through the DDM (Frank et al., 2015; Mack & 
Preston, 2016; Roberts & Hutcherson, 2019; White, 
Mumford, & Poldrack, 2012) to demonstrate that trial-by-
trial neural signals from occipital, mid cingulate, and lateral 
PFC track the accumulation of evidence in category 
decisions. Importantly, LPFC activation tracked participant-
specific predictions of exemplar-based category evidence as 
formalized by EBRW (Nosofsky & Palmeri, 1997). More 
generally, this approach offers a novel method for 
quantitatively connecting behavioural data to neural 
processes with cognitive theory. 
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