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Abstract 
Do people perceive shapes to be similar based purely on their 
physical features? Or is visual similarity influenced by top-
down knowledge? In the present studies, we demonstrate that 
top-down information – in the form of verbal labels that people 
associate with visual stimuli – predicts visual similarity as 
measured using subjective (Experiment 1) and objective 
(Experiment 2) tasks. In Experiment 1, shapes that were 
previously calibrated to be (putatively) perceptually 
equidistant were more likely to be grouped together if they 
shared a name. In Experiment 2, more nameable shapes were 
easier for participants to discriminate from other images, again 
controlling for their perceptual distance. We discuss what these 
results mean for constructing visual stimuli spaces that are 
perceptually uniform and discuss theoretical implications of 
the fact that perceptual similarity is sensitive to top-down 
information such as the ease with which an object can be 
named. 
Keywords: visual similarity; nameability; perceptually 
uniform; top-down processing; language 

Introduction 
What determines the perceived similarity of two objects? 
Researchers have sought to measure perceptual similarity for 
at least two central reasons. First, perceptual similarity has a 
pervasive influence on cognitive processing, including 
attention, memory and categorization processes (e.g., Jiang et 
al., 2016; Kravitz & Behrmann, 2011; Sloutsky, 2003). 
Second, precisely because perceptual similarity consistently 
influences cognitive processes, measuring perceptual 
similarity has crucial methodological importance, since 
researchers will often seek to control for perceptual similarity 
(Li et al., 2019). Past efforts have led to the development of 
stimulus spaces in which perceptual similarity is carefully 
mapped. One example of a perceptually uniform space is the 
CIELAB color space (Roberston, 1990). Pairs of equidistant 
stimuli in this space are (roughly) equally discriminable 
(Cheung, 2016). 

One challenge for these efforts is that recent theories 
suggest that lower-level representations of similarity and 
higher-level representations (e.g., category knowledge) 
mutually influence one another in a dynamic fashion (e.g., 
Lupyan 2015; Hohwy, 2014). A consequence of these views 
is that representations of similarity are not stable – instead, 

they can vary dramatically across tasks and contexts (Çukur 
et al., 2013). For example, in the context of clouds, the color 
“grey” is more similar to the color “black” than to the color 
“white” (since darker clouds index rain); in the context of 
hair, on the other hand, “grey” and “white” are more similar 
because grey and white hair color is associated with older age 
(Roth & Shoben, 1983). 

The dynamic nature of representations has consequences 
for measuring perceptual similarity. In particular, different 
contexts and tasks are differentially sensitive to top-down 
representations (such as category knowledge) influencing 
judgements about lower-level properties (such as visual 
similarity). Contextual effects on perceptual judgments are 
ubiquitous in domains such as color perception (Goldstone, 
1995). For example, people typically demonstrate an 
advantage for between-category color discrimination (e.g., 
for English speakers, discriminating a shade of blue and a 
shade of green) compared to within-category discrimination 
(e.g., for English speakers, discriminating two shades of 
blue), even when the perceptual distance is equated on a 
perceptually uniform color space. However, when people 
make many within-category judgements, the between-
category advantage largely disappears (Witzel & 
Gegenfurtner, 2015). Perceptual similarity spaces can be 
warped by the perceptual context and goal. 

One source of top-down influence on perception is 
language (Lupyan & Clark, 2015). While our perceptual 
systems deal in particulars (every red is a particular shade of 
red), language deals in categories (the word “red” denotes a 
category). Once learned, a name becomes a powerful cue, 
warping color representations into a more categorical form. 
For example, Forder and Lupyan (2019) showed that 
immediately after hearing a basic color term (e.g., “red”, 
“green”), people were much more accurate in discriminating 
the named color from nearby colors in an odd-one-out task. 

The present studies 
In a recent study, Li et al. (2019) developed a perceptually 
uniform space of shape stimuli – in analogy to CIELAB space 
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– validated through subjective ratings of similarity between 
shape items that morph into one another in a continuous 
perceptual space (Figure 1). Given past research on the 
sensitivity of perceptual similarity to top-down factors such 
as verbal encoding, we predicted that viewing more nameable 
shapes would activate verbal labels, which would in turn 
warp the perceptual space around the shape. The consequence 
of this warping is that easier-to-name shapes should become 
easier to distinguish from their neighbors in shape space, 
particularly when the neighbors are likely to not share a label. 
In Experiment 1, we demonstrate that the degree to which 
visual items share similar names predicts the likelihood of 
clustering them together, over and above the normed 
perceptual distance between items. In Experiment 2, we 
demonstrate that nameability predicts people’s visual 
discrimination: the more nameable a shape is, the easier it is 
to visually discriminate it from its neighbors. 

Experiment 1: Clustering images based on 
visual similarity 

We tested whether participants consistently used nameability 
to guide their decisions about which visual items were more 
similar to one another. First, we collected nameability ratings 
for a validated set of shape stimuli, normed to be equidistant 
in subjective visual similarity (Li et al., 2019). Then, we 
instructed a new group of participants to arrange these images 
based on their similarity. If people use verbal labels to guide 
their explicit judgments of visual similarity, then the degree 
to which visual items share similar names should predict their 
likelihood of being grouped together, over and above what is 
predicted by the items’ visual similarity within the normed 
perceptual space. 

Method 

Participants 
Naming task. We recruited 120 participants (64 female; 118 
native speakers of English) through Amazon Mechanical 
Turk (mean age: 37.5 years; SD = 11.6; range: 20 – 74 years). 
Participants were paid $0.30 for completing the task.  
 
Sorting task. We recruited 28 (17 female; 27 native speakers 
of English) undergraduate students at a large Midwestern 
university, who took part in the study for course credit (mean 
age: 18.46 years; SD = 0.69; 18 – 20 years).  

Stimuli 
We selected 36 items sampled at 10 degree increments (see 
Fig 1) along the Validated Circular Shape (VCS) space (Li et 
al., 2019). 

 
Figure 1: Example stimuli from the Validated Circular 

Shape (VCS) space (sampled at an angular distance of 30°). 

Design & Procedure 
Naming Task. The 36 images were grouped into three sets 
of 12 images equidistant in the validated circular shape space. 
This was to ensure that participants did not judge items that 
were extremely close in the validated shape space and to 
reduce the likelihood that participants would frequently re-
use the same label in naming shapes. Participants were 
randomly assigned to one of the three image sets (e.g., a 
participant would see the images corresponding to the angles 
of 10, 40, 70, 100, 130, 160, 190, 220, 250, 280, 310, and 340 
in the circular shape space). On each trial, participants viewed 
one of the 12 images presented in random order. Participants 
were instructed to name the image in 1-2 words, as quickly 
as possible. Participants who did not provide an appropriate 
name for the three familiar images (n = 4) or who did not 
comply with task instructions (n = 1) were excluded from the 
analysis, leaving a final sample of n = 115. 
 
Sorting Task. For the sorting task, items were presented 
around the outer edges of the screen in a randomized order. 
Participants were instructed to sort the items on the basis of 
similarity by dragging the items into groups. Once they had 
finished sorting, they entered the labeling phase, in which 
they were asked to provide a 1-2 word label for each of the 
shape clusters. Items could not be moved during the labeling 
phase. One participant’s data was excluded due to a technical 
error. 
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Results 

The data and analysis code for all results are openly 
available (https://github.com/mzettersten/vcs). 

Relationship between nameability and shape 
similarity 
First, we investigated the degree to which participants’ 
naming judgments were related to the angular distance 
between visual objects in the Validated Circular Shape space. 
  
Nameability measures. We quantified nameability in two 
ways. First, we computed the nameability of each item in 
terms of the diversity of participants’ responses, calculated 
using Simpson’s diversity index D (Simpson, 1949). 
Simpson’s diversity index is sensitive to the frequencies of 
each word used (Majid et al., 2018). Formally, for a given 
stimulus, if speakers produce N description tokens, including 
R unique description types from 1 to R, each with frequencies 
of n1 to nR, then Simpson’s diversity index D is computed as 
 

 
 

This measure ranges from 1 – indicating high nameability (all 
respondents gave the same response type, i.e. i = 1 and ni = 
N) – to 0 – indicating low nameability (all respondents gave 
unique response types, i.e. ni = 1 for all i). 

Second, we considered the extent to which the naming 
responses provided for each pair of images were related. To 
compute the degree of name-based similarity between two 
images, we first computed a vector of counts for each unique 
response provided for each image. We then computed the 
cosine similarity between the count vectors of each image. 
Values ranged from 0 (no overlap in the names given to two 
images) to 1 (perfect overlap in the verbal responses). 

 
Nameability and normed visual similarity. Nameability 
varied substantially across the shape similarity space (M = 
.09, 95% CI = [.06, .11], range = [.01, .27]; Figure 2), 
transitioning between roughly five modal labels (star, blob, 
rabbit, vase, pentagon) across the circular similarity space. 
The shape with the highest name agreement (angle 350) was 
described as a “star” by 73.0% of respondents, while the 
shape with the lowest name agreement (angle 100) was 
described as a “bunny” or “rabbit” by 10.5% of respondents. 

 

 
Figure 2: Simpson’s diversity index for the VCS shapes. 

Modal names are presented alongside each shape. 

Relationships between nameability measures and 
clustering 
To determine whether name-based similarity predicts how 
people cluster the shapes according to their perceived 
similarity, we computed the final coordinates of every item 
from a participant’s sorting solution and used the ‘pamk’ 
function (‘fpc’ package; Hennig, 2019) to identify medoid-
based clusters of items (Kaufman & Rousseeuw, 1990). We 
then computed the average probability that each possible pair 
of items would be placed within the same cluster. We also 
recorded each participant’s labels for their clusters (n = 25; 
two participants completed the sorting task, but failed to 
provide labeling data). 
 
Name-based similarity predicts clustering probability. On 
average, participants grouped the shapes into 5-6 clusters (M 
= 5.52, 95% CI = [4.50, 6.53], range = [2, 10]). There was 
substantial variability in how likely pairs of images were to 
be clustered together (mean clustering probability = 0.23 
,95% CI = [.21, .25], range = [0,1]). To test whether name-
based similarity predicts the likelihood that participants 
placed images in the same cluster, we fit a general linear 
model predicting the average probability that two images 
would be grouped together from the name-based similarity of 
each image pair (i.e., the cosine similarity of responses for 
each image in the naming task), while controlling for angular 
distance between images. Name-based similarity was a 
strong predictor of the probability that two images would be 
clustered together, after controlling for angular distance, b = 
0.14, t(627) = 5.50, p < .001. 
 
Nameability of individual shapes predicts nameability of 
clusters. We also investigated whether the nameability of 
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individual shapes predicted the nameability of the clusters in 
which the shapes were placed. For the nameability of images 
based on the clustering task, we assigned each image the label 
given to its respective cluster by participants in the sorting 
task and then computed Simpson’s diversity index for each 
image, based on the names of the clusters they belonged to. 
The name agreement for clusters was generally lower (M = 
.04, 95% CI = [.03, .05], range = [.01, .09]) than for individual 
shapes. This is likely due to there being more opportunity for 
variation in the cluster names (because each cluster contained 
a variety of shapes with potentially different names), as 
compared to naming shapes in isolation. Crucially, name 
agreement (Simpson’s diversity index) for individual shapes 
was highly correlated with the name agreement of clusters 
that images were sorted into (r = .85, 95% CI = [.73, .92], 
t(34) = 9.46, p < .001; Figure 3). In other words, 
independently collected naming norms predicted the 
consistency of the labels associated with each shape’s 
clusters. 

Figure 3: Correlation between Simpson’s diversity index for 
naming an individual image and Simpson’s diversity index 

for the same image’s cluster names. 

Discussion 
In Experiment 1, we investigated whether nameability 
predicted how participants would cluster shapes based on 
perceptual similarity within a space of visual images normed 
to be perceptually uniform. We found three main results. 
First, the distribution of name agreement across the normed 
stimulus space was not uniform: some shapes were 
substantially more nameable than others. Second, the 
nameability of individual shapes (assessed in a separate 
naming task) predicted how nameable their clusters were in a 
sorting task: more nameable shapes were also placed into 
more nameable groups of images. Most importantly, we 
found that name-based similarity skewed which images 
participants grouped together: two images that shared more 

similar verbal descriptions were more likely to be placed into 
the same cluster, while controlling for their perceptual 
distance in the validated circular shape space. 

The current results suggest that the nameability of 
individual images, and the degree to which nameability 
overlaps between items, can affect people’s subjective 
judgements of which images are more similar to one another. 
One possibility is that these effects are relatively transitory 
and only appear when participants are asked to make slow, 
deliberative decisions in which they incorporate verbal 
information. However, an alternative possibility is that 
nameability may skew perceptual similarity even early on in 
the processing stream. To test this possibility, in Experiment 
2, we investigated the effects of nameability in a visual 
discrimination task designed to provide a more objective 
measure of perceptual similarity. 

Experiment 2: Perceptual discriminability 
In Experiment 2, we investigated whether the nameability of 
VCS shapes would predict the perceptual discriminability of 
shapes in a speeded match-to-sample task. Response times in 
speeded visual discrimination tasks are a sensitive measure 
of perceptual processing of visual images (Lupyan, 2008) and 
allow us to gain more fine-grained insight into the nature of 
participants’ perceptual representations. 

Method 

Participants 
We recruited 58 (29 female; 51 native speakers of English) 
new participants from the undergraduate psychology student 
research pool at a large Midwestern university (Mean age: 
18.5 years; SD = 1.07; range: 18-24 years). Students 
participating in the study received course credit. Five 
additional participants participated but were not included due 
to having less than 80% useable trials (n = 1 due to a technical 
error and n = 4 due to a high rate (>20%) of trial exclusions). 

Stimuli 
The stimuli were the same 36 visual items selected from the 
Validated Circular Shape space in Experiment 1. 

Design 
Since testing all pairwise comparisons between items would 
have led to far too many experimental trials to collect within 
one participant, we split item-wise comparisons into two 
counterbalanced, between-subjects conditions. One 
counterbalancing condition controlled the angular distance 
between target and foil items on each trial. Participants were 
randomly assigned to judge items either at a 10 degree, 20 
degree, or 30 degree angular distance (manipulated between-
subjects). The second counterbalancing condition split the 36 
items into two equidistant groups to ensure that we had a 
sufficient number of trials for each item comparison within 
each participant (n = 32 per item pair). For example, if 
participants were in the group judging item pairs that were 10 
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degrees apart along the shape circle, they would judge one of 
two mutually exclusive sets of 18 item pairs spaced 
equidistantly around the shape circle (set 1: 10°-20°, 30°-40°, 
50°-60°,…; set 2: 20°-30°, 40°-50°, 60°-70°,…). Participants 
were randomly assigned to the two counterbalancing 
conditions.  

Participants completed 32 match-to-sample trials for each 
item pair under speeded conditions. Each of the two items 
served as the standard – and therefore also the target – on half 
of these trials. The location of the target was counterbalanced 
across trials for each participant. Each participant judged 18 
equidistant item pairs, leading to a total of 576 test trials per 
participant. 

Procedure 
On each speeded match-to-sample trial (Figure 4), 
participants judged whether a visual stimulus (the standard) 
matched one of two images (the target and the foil) appearing 
below the standard. At the onset of each trial, three 
placeholder boxes appeared on the screen for 500ms to orient 
the participant to the locations of the three shape images on 
each triad trial. Then, the standard was presented in the top 
box for 1s. Next, the target and the foil appeared below the 
standard in the left and right boxes. Participants were 
instructed to judge as quickly as possible, without making 
errors, whether the top shape matched the left or the right 
shape. Participants used the ‘z’ (left response) and the ‘/’ 
(right response) keys on the keyboard to indicate their 
response. If participants responded incorrectly, a short 
buzzing sound was played over headphones to provide 
participants with feedback.  
 

 
Figure 4: Speeded match-to-sample trial design in 

Experiment 2. 

Results 

Overall speeded verification performance 
Trials with either very short (<200 ms) or very long (>5000 
ms) reaction times were excluded from the analysis (~1.3% 
of all trials). Overall, participants performed highly 
accurately at the task while making speeded judgments, with 
higher accuracy and speed when the angular distance 
between target and foil shapes was greater (Table 1).  
 

Table 1: Accuracy and Reaction Times in Experiment 2 
 

Distance  
Condition 

Mean Accuracy Mean RT  
(correct trials) 

10 M = 82.4% 
95% CI = [77.9%, 86.8%] 

M = 1443ms 
95% CI = [1249ms,1638ms] 

20 M = 92.9% 
95% CI = [91.0%,94.8%] 

M = 1094ms 
95% CI = [987,1201ms] 

30 M = 95.2% 
95% CI = [94.0%,96.4%] 

M = 808ms 
95% CI = [723ms,893ms] 

 

 
Figure 5: Relationship between name agreement (Simpson’s 
diversity index) for the standard and correct RTs (averaged 
across subjects). Colors/panels represent angular distances 
between the standard and foil (smaller values correspond to 

more visually similar shapes). 

Nameability and name-based similarity predict 
discriminability 
We predicted that the verbalizability of visual shapes would 
affect participants’ ability to rapidly identify the shape 
matching the standard in two ways. First, we predicted that 
more nameable standard images would help participants 
more quickly identify the target image. However, the name-
based similarity between the target image and the foil image 
may alter the degree to which the activation of a verbal label 
is helpful: if both the target and the foil image activate similar 
verbal labels (e.g., if both images activate the label “star”), 
this should dampen the benefit of a more nameable standard 
by increasing the confusability of the target and foil. Thus, 
our second prediction was that the nameability of the standard 
image and the name-based similarity between target and foil 
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image would interact, such that target-foil pairs with higher 
name-based similarity would lead to slower response times. 

To test these predictions, we used the lme4 package in R 
(Bates, Mächler, Bolker, & Walker, 2015; version 1.1-21) to 
fit a linear mixed-effects model predicting participants’ trial-
by-trial reaction times (correct trials only; in ms) from the 
nameability of the standard (Simpson’s diversity index; 
centered), the name-based similarity between the target and 
foil (centered), and their interaction, while controlling for the 
angular distance between the target and the foil. We first fit 
the model with the maximal random effects structure for 
participants and items, and then iteratively pruned random 
effects until model convergence was achieved. The final 
model included a by-participant random intercept and 
random slope for the nameability of the standard, as well as 
by-item random intercepts for the target and the foil. We used 
Satterthwaite’s method to estimate degrees of freedom.  

Nameability of the standard predicted faster response times 
on correct trials, b = -596.3, Wald 95% CI = [-1065.7, -
126.8], t(47.6) = -2.49, p = .016 (Figure 5). Moreover, 
consistent with our second prediction, there was a significant 
interaction between the nameability of the standard and the 
name-based similarity of the target and foil images, b = 688.4, 
Wald 95% CI = [98.3, 1274.5], t(3879) = 2.29, p = .022. As 
name-based similarity between the target and foil images 
increased, the boost to reaction times conferred by nameable 
standard images decreased. There was also a significant 
overall effect of name-based similarity, b = 65.8, Wald 95% 
CI = [15.7, 115.8], t(6130) = 2.58, p = .01, such that reaction 
times were slowed when target and foil images were more 
similar (controlling for angular distance between the shapes 
and the nameability of the standard). 

Discussion 
Across varied tasks, nameability predicted visual similarity. 
In a shape space specifically constructed to create 
perceptually equidistant shapes, nameability predicted how 
people clustered items based on similarity. Items that were 
more likely to be given similar verbal descriptions were more 
likely to be grouped together in similarity space, over and 
above what one would predict based on shapes’ normed 
similarity distance. The effect of nameability extended 
beyond explicit clustering judgments into more objective 
measures of perceptual similarity. When participants were 
asked to discriminate images in a speeded match-to-sample 
visual discrimination task, a more nameable standard led 
participants to more quickly identify the target, again 
controlling for the normed perceptual similarity distance 
between shapes. 

Why were these nameability effects not already “baked 
into” the VCS norms? Li et al. (2019) relied on iterative 
norming using odd-one-out tasks to generate shapes that are 
perceptually equidistant. Had we used their exact tasks, we 
have every reason to think that we would replicate their 
results. But altering the tasks even subtly led to very different 
estimates of which shapes are similar. Specifically, the 
instruction in Experiment 1 to group shapes led people to 

produce similar clusters. Although Experiment 2 used a triad 
task similar to that used by Li et al. (2019), the inclusion of a 
delay between the presentation of the standard and target/foil 
(Fig 4) may have led to an automatic, verbally aided 
categorization of the standard (as in Lupyan et al., 2010). If 
true, this would predict that decreasing the delay would 
reduce the effect of nameability. Relatedly, it is possible that 
the benefits of verbally supported categorization were 
amplified due to the speeded nature of the match-to-sample 
task. For example, past work suggests that verbal labels may 
facilitate deployment of attention to named objects early in 
visual processing (e.g., Lupyan & Spivey, 2010). 

Nameability vs. alternative explanations. The current 
studies provide evidence that a shape space constructed to be 
perceptually uniform nevertheless exhibits consistent 
similarity structure, and that this similarity structure is related 
to the verbalizability of individual shapes. Our preferred 
explanation of why nameability and visual similarity go 
hand-in-hand is that labels play a causal role in visual 
processing, by guiding categorization judgements (Sloutsky, 
Lo, & Fisher, 2001; Perry & Lupyan, 2014) and shaping 
perceptual expectations (Lupyan & Clark, 2015; Samaha et 
al., 2018). However, the current findings do not rule out 
alternative non-linguistic explanations. For example, the top-
down influence of non-linguistic category-based 
representations may simultaneously explain differences in 
how images are perceived and in how easy images are to 
name. One way to disentangle these alternative explanations 
would be to test differences in perceptual similarity across 
languages that differ in how they verbally encode a variety of 
shape sets: if language plays a causal role in visual similarity, 
then perceptual processing should vary with how 
verbalizable a given object is in each language. Our results 
can also be further generalized by applying our methods to 
new stimuli. 

Measuring perceptual similarity. Our work emphasizes 
that visual similarity requires taking into account both the 
task used to make the measurement and nonvisual factors 
such as nameability and name-based similarity. A space that 
appears perceptually uniform as assessed in one task, e.g., 
using untimed subjective ratings, can become non-uniform as 
assessed through a different task such as speeded 
discrimination. For a given task, the similarity of two stimuli 
is influenced not only by perceptual factors, but also by how 
the stimuli relate to previously learned named categories. 
Researchers should always be cautious to use measurements 
of similarity that will appropriately generalize to the 
conditions under which participants are tested in their design 
and are meaningful for the inferences they require. 

Why is it so hard to measure visual similarity that is 
independent of non-visual information? One may be 
justifiably puzzled as to why non-visual information – such 
as how easy it is to name a shape – should have such a 
consistent impact on visual similarity. Why is it so difficult 
to obtain an “objective” index of perceptual similarity that 
remains consistent across testing conditions? While a fully 
satisfying answer to this question lies outside the scope of the 
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current paper, we believe the persistent influence of top-down 
information – even early on in perceptual processing (see 
e.g., Samaha et al., 2018) – is likely connected to the 
fundamental goals of perception. Rather than encoding 
perceptual features in an objective fashion, the goal of 
perceptual processing is to generate representations that are 
useful to the perceiver (Hoffman, 2016). As David Marr 
(1982) put it, "vision is a process that produces from images 
of the external world a description that is useful to the viewer" 
(p. 31). Incorporating top-down information when computing 
similarity is broadly useful, and verbal information may gain 
particular weight given the pervasive need to talk and 
communicate about what we see. When judging whether two 
shapes are similar, what we might call them cannot help but 
come to mind. 
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