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Abstract

Statistical learning is an active process wherein information is
actively selected from the learning environment. As current
information is integrated with existing knowledge, it shapes
attention in subsequent learning, placing biases on which new
information will be sampled. One statistical learning task that
has been studied recently is cross-situational word learning
(CSL). In CSL, statistical learners are able to learn the cor-
rect mappings between novel visual objects and spoken labels
after watching sequences where the two are paired together
in referentially ambiguous contexts. In the present paper, we
use a computational method called Tensor Component Analy-
sis (TCA) to analyze real-time gaze data collected from a set of
CSL studies. We applied TCA to learners’ gaze data in order
to derive latent variables related to real-time statistical learning
and to examine how selective attention is organized in time.
Our method allows us to address two specific questions: a) the
similarity in attention behavior across strong vs. weak learn-
ers as well as across learned vs. not-learned items and b) how
the structure of attention relates to word learning. We mea-
sured learners’ knowledge of label-object pairs at the end of a
training session, and show that their real-time gaze data can be
used to predict item-level learning outcomes as well as decode
pretrained item knowledge.
Keywords: cross-situational word learning, factor decompo-
sition, selective attention, statistical word learning,

Introduction
The everyday world is a complicated setting for learning
words. Whenever a word is heard by a learner, there are usu-
ally many potential referents present at that moment. This
presents a real problem for word learning, as inferring which
labels go with which objects is inherently ambiguous. Quine
(1960) famously framed this as a problem of referential un-
certainty. A recently proposed solution to this problem is
termed cross-situational learning. In cross-situational word
learning (CSL), learners don’t have to infer the correct refer-
ent for a word within one learning situation. Instead, they in-
tegrate statistical evidence across multiple learning situations
to reduce uncertainty about the correct label-object mappings.
Experimental studies have shown that both infants and adults
can successfully map novel words to their visual referents
cross-situationally, under varying degrees of referential un-
certainty (Smith & Yu, 2008; Yu, Zhong, & Fricker, 2012).

In most statistical learning paradigms, such as those used in
CSL experiments, researchers encode certain statistical regu-
larities into training stimuli and measure whether learners can
successfully use those regularities to infer new knowledge.
Prior CSL studies have demonstrated a number of different

learning effects by manipulating stimuli statistics showing,
for example, that Zipfian frequency distributions for label-
object pairings may actively aid learning (Hendrickson &
Perfors, 2019), that 16 month olds prefer massed pairings ver-
sus conditions that space presentations evenly in time (Vlach
& Johnson, 2013), and that children learn better in conditions
where label-object pairs are embedded within diverse con-
textual frames (Suanda, Mugwanya, & Namy, 2014). These
sorts of statistical features of the input (e.g. the shape of the
frequency distribution or the temporal/contextual statistics)
drive learning in different directions. However, even in cases
where subjects demonstrate successful learning, it’s unlikely
that they keep track of all the regularities encoded in the train-
ing stimuli. Instead, human cognitive systems are selective.
Learners take an active role in selecting their learning curric-
ula from the set of available statistics, with different sampling
schemes leading to individual differences in learning perfor-
mance. Prior work has shown that fine-grained differences in
attention behavior predict learning outcomes during CSL (Yu
& Smith, 2011). Detailed analyses of eye movement data has
also informed us of underlying cognitive processes in cate-
gory learning studies (Rehder & Hoffman, 2005b, 2005a).
This is because participants use their attention in the ser-
vice of learning, by placing statistical biases on the learn-
ing data, thereby filtering information that enters internal pro-
cesses. These filtering operations help to reduce uncertainty
and shape how learning proceeds over time. However, apart
from the studies cited above, few studies in statistical learn-
ing have focused on linking real-time selective attention with
real-time information processing in statistical learning tasks.
The goal of the present study is to look closely at the structure
of these attentional biases during CSL.

Here we measure how visual attention is structured in
time, and study how this organization may reflect underly-
ing learning processes. We treat eye movements as a signal
carrying information about participants’ learning state, and
model gaze patterns associated with prior knowledge. We
study these gaze patterns using an unsupervised data mining
method and present results that attempt to decode learners’
internal knowledge from their eye movements. Our methods
offer a general framework for measuring how selective atten-
tion and learning processes are coupled. But more impor-
tantly, they allow us to examine complex and highly variable
eye movement dynamics at a fine grain, so that we may bet-
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ter understand the cognitive processes which support cross-
situational learning.

Eye Movement Data in Cross-Situational
Learning

The gaze data in the present study were collected from a
group of 61 adult learners. They were asked to learn 18
label-object mappings from 27 cross-situational learning tri-
als. Each trial contained four objects displayed on a com-
puter screen and four labels played sequentially in time. As
shown in Figure 1, there were 4 perfect label-object mappings
among 4 objects and 4 labels within a trial, but no informa-
tion in the trial indicated which word went with which la-
bel. Participants used statistical evidence across multiple sit-
uations to build correct mappings, as shown in many previ-
ous experiments (Yu & Smith, 2011; Suanda et al., 2014; Yu
et al., 2012). In this study, each trial lasted 11.25 seconds
and started with a silent segment of 2.25 seconds before the
first labeling event, allowing participants to become familiar
with the set of 4 objects on screen before hearing the labels.
The silent segment was followed by 4 labeling events with 2.5
seconds between label onsets. Labels were roughly 1 sec in
length, so a temporal window of 2.25 seconds included both
the labeling event itself and roughly 1.25 second after the la-
beling event as shown in Figure 1B. We recorded participants’
eye movements using a Tobii 1750 eye tracking system over
the course of 27 learning trials. At the end of the experiment,
we tested participants’ knowledge on each of 18 label-object
mappings using an 18-alternative forced choice test. In ad-
dition, we also ran 3 other identical experiments, each with
a unique set of subjects, the only difference being that either
3, 6 or 9 of the items had already been pretrained, so in those
conditions we knew that learners already knew a specific sub-
set of the 18 items. We refer to these conditions as 3pt, 6pt,
and 9pt. Some results from this experiment were previously
reported in Yu et al. (2012), where more details can be found.

In data preprocessing, we divided each learning trial into
four temporal segments, one for each label as shown in Fig-
ure 1B. Over the course of 27 trials with 4 labeling events
per trial, a total of 108 labeling segments were created for
each subject. Within each segment we calculated the prob-
ability distribution for a subject’s eye movements over the 4
on-screen objects. Here P(o | l) is the proportion of time at-
tending to object o given label l, reflecting the degree of gaze
allocation to each object during a labeling event. As illus-
trated in Figure 1C, with 108 segments from each participant
and a total of 61 participants for each condition, we calcu-
lated and collected 6588 (108*61) gaze distributions which
we used as empirical data in the following analyses.

Using TCA to Examine the Structure of
Sequential Visual Sampling Behavior

One way to study the structure of real-time selective attention
is to use pre-defined behavioral patterns which describe cer-
tain aspects of how gaze is distributed (e.g. number of gaze

Figure 1: A schematic of the cross-situational learning ex-
periment and its stimuli. In this figure, the target “prep” is
a brown rectangular object, which subjects attend at varying
degrees (red bars in panel B and C).

shifts, average fixation time, time to first fixation), and an-
alyze how those behavioral patterns change over the course
of learning. This approach can reveal important fine-grained
behavioral differences across learners and has shown to be in-
formative in explaining learning performance in CSL (Yu &
Smith, 2011). By analyzing how gaze behavior shifts over the
course of training, we’re given a window into cognitive pro-
cesses that support learning. However, given the complexity
of natural eye movements, it’s not a priori obvious which be-
havioral patterns we should choose in our analyses and why
these particular patterns are useful for understanding under-
lying cognitive processes. The present study proposes an al-
ternative approach in eye movement analysis – learning these
patterns from the gaze data itself and modeling their covaria-
tion in time.

In order to infer useful gaze patterns from raw data, we
used an unsupervised factor analysis method – the canoni-
cal polyadic tensor decomposition (CPD) (Hitchcock, 1927).
CPD is a multilinear method for dimensionality reduction,
modeling tensor-structured input as a low dimensional lin-
ear projection. These projections form the basis of how we
describe attention behavior. What’s unique about CPD is that
it allows us to model how attention is organized at multiple
time scales, both within and across trials, by treating different
scales as separate factors encoded along the different axes of
an input tensor1. In a recent paper by Williams et al. (2018),

1Tensors are a generalization of vectors and matrices, where vec-
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CPD has been used to successfully decode functionally spe-
cific neural activities during learning tasks, and went by the
name of Tensor Component Analysis (TCA). This is the name
we’ll use for it here.

TCA is similar to Principal Component Analysis (PCA)
and other matrix factorization techniques, but offers a few key
advantages. With TCA, we can model how multiple factors
interact (e.g. subjects, within-trial gaze, and across-trial gaze)
by decomposing gaze data into linearly independent compo-
nents, finding unique representations that unmix their inter-
actions to best explain the gaze data. In PCA, similar analy-
ses require unrolling inherently tensor-shaped data into a 2D
matrix representation, as a result destroying the organization
present in its equivalent tensor form. Compared with TCA,
PCA’s decomposition introduces what’s known as the “ro-
tation problem”, where any given factorization specifies an
infinite number of solutions (under arbitrary rotations). Rota-
tions keep reconstruction loss fixed while transforming how
these solutions are organized. In order to tie structural aspects
of attention to cognitive processes, we need to know specif-
ically how these solutions are structured, which presents a
significant problem. To solve this, PCA constrains solutions
to be orthogonal and orders its components in terms of the
amount of variance explained. However, these constraints are
overly strict, as we have no reason to assume that attention
is composed of orthogonal components. We leverage TCA’s
uniqueness properties (Kruskal, 1977) to model within- and
across-trial variation in subjects’ gaze behavior, avoiding this
specific shortcoming of PCA. We encode subjects’ gaze dis-
tribution dynamics as a 3rd order tensor, and use TCA em-
beddings to model attention dynamics during CSL.

Each axis of an input tensor X maps to a separate factor
after decomposition, with each factor represented as a 1D
vector. When factors are recombined, they reconstruct the
original behavioral data. As shown in Figure 2, {ar, br, cr}
are the learned factors (one for each of the 3 axes of X ), “◦”
is the vector outer product, and R is a hyperparameter con-
trolling the number of components that TCA learns. We or-
ganized subjects’ gaze distributions into a 3rd-order tensor,
so that axes partition data along three meaningful dimensions
– subjects, gaze distribution at label onset, and gaze distri-
bution across the 108 labeling events. We used these fac-
tors to model similarity in subjects’ otherwise disparate se-
lective attention dynamics, reducing complex sequential be-
havior to fixed points in an embedding space (one point for
each subject). TCA places minimal top-down constraints on
the learned representations, only stipulating that components
are linearly independent. In our case, we additionally con-
strained solutions to be non-negative.

To illustrate how TCA decomposes gaze behaviors, we
present a toy example with synthetic gaze data in Figure 3.
We randomly generate gaze distributions for simulated learn-
ers, where their attention to the 4 on-screen items is randomly

tors are 1st order tensors and matrices are 2nd order tensors. Our
analyses structure behavioral data as a 3rd order tensor. See Kolda
and Bader (2009) for a review of tensor decomposition.

Figure 2: Subjects’ gaze is organized as a 3rd order tensor
and represented as the sum of R outer products using TCA.
These are the R “components” of attention behavior. For the
gaze axis, we encode the proportion of time spent looking
at the 4 items on screen after a label onset. The first row
in the gaze axis codes for proportion of time looking at the
target, with subsequent rows coding for proportion looking
to distractor (in decreasing order, where distractor 1 is most
attended, followed by distractor 2, then distractor 3). Gaze
distributions are arranged as 108 column vectors along the
time axis, corresponding to 108 label-onset instances in the
experiment. Sampling trajectories for each subject are slices
arranged along the third axis, one for each of the 61 subjects.

distributed as a Gaussian whose mean is shifting over time
( p̃(x, t) = N (µt ,1), where µt is a function of time). These
synthesized gaze data form the column vectors running along
the time axis in X , with each simulated learner as a slice along
the subjects axis. We randomly partition subjects into two
groups, A and B, and give them two distinct time dynamics:
in Group A, their µt shifts from 0 to 4 across the 108 time
points (in equal increments), and in Group B this shift goes
in reverse, with µt going from 4 to 0. TCA differentiates these
two kinds of subjects by recovering the underlying dynamics
of their gaze, represented as a mixture of 3 linearly indepen-
dent components (one for each value of R). Each of the 61
simulated subjects are indexed along the x-axis of the subjects
factor. Subjects in Group A are highlighted in yellow. In the
r3 component we see that Group A subjects over-weight the
“low-µ decreasing over time” gaze pattern. In the r1 compo-
nent, the group B subjects show the inverse pattern, while the
r2 component does not code for any cross-subject variation.
As shown in Figure 3, TCA successfully decodes the three la-
tent variables as subject factor, gaze factor and time factor, to
perfectly match the raw synthesized data. Thus, this toy ex-
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ample shows how TCA uncovers key factors from observed
data.

Figure 3: We compute an R = 3 decomposition on synthetic
gaze distributions and plot the resulting factors.

Study 1: Eye Movements Predict Learning
Dynamics

We applied TCA at two levels, one at the subject level, and
the other at the item level. Figure 2 shows a schematic of
the subject level decomposition, where individuals’ behavior
is encoded along the axis dedicated to subjects. For the item
level decompositions, we collapse across subjects and encode
individual item gaze distributions in place of the subjects axis.
Instead of 108 entries for the time axis, there are only 6 time
points in the item-level analyse since each item is labelled
6 times across an experimental condition when paired with
other distractor items. These two separate decompositions
serve to model variability in both subject level attention, as
well as attention specific to individual items.

Our analyses present decompositions where R = 3, as we
find this setting leads to a high degree of similarity in solu-
tions across many optimization runs, while significantly min-
imizing reconstruction loss. See Figure 4 for plots of sub-
ject level decomposition weights. Here TCA uncovers 3 dis-
tinct components of gaze behavior: r1: selection that’s spread
across both target and distractor items and decreasing over
time, r2: skewed to the distractors and increasing over time,

and r3: skewed to the target and increasing over time. Along
with the gaze factors, TCA also learns 2 other factors – sub-
ject and time. These correspond to the other 2 axes of X .

Figure 4: In a subject-level decomposition (with R = 3), TCA
uncovers how 3 unique types of gaze dynamics should be
mixed to reconstruct the input. We took a median split on
subjects as a function of the number of items they learned at
the end of the experiment, with strong learners (≥ 6 items)
highlighted in orange.

Attention Space The factor weights indicate the degree to
which other factors in that component mix to reconstruct X .
This means we can use the subject and item factor weights to
define an R dimensional “attention space”, wherein each sub-
ject (or each item), is a point corresponding to the different
values encoded by their R distinct subject (or item) factors.
See Figure 5.

This reduces subjects’ highly variable sequential sampling
dynamics into a common frame of reference, thereby allow-
ing us to model the relationship between visual selection and
learning. We took a median split to divide subjects into a
strong learner group and a weak learner group based on the
number of items learned by individual subjects. If strong
learners tend to occupy a certain behavioral subspace, this
would suggest a commonality in how they deployed their at-
tention which ultimately led to successful learning. If strong
and weak learners were not separable in the behavioral space,
it would suggest we cannot use gaze behavior to predict
learning outcomes. In the following subsections, we will
present a classification approach to examining whether we
can use TCA-based representations to separate strong from
weak learners in the subject space, and to predict learned or
unlearned items in the item space.

Using TCA-based Representations to Predict
Learning
We used classification accuracy via linear kernel Support
Vector Machine (SVM) to measure how well gaze behavior
can be used to separate learning outcomes at both the sub-
ject and item levels. We treated classification tests as a proxy
measure for the amount of information gaze carries about in-
ternal learning states. The classification results we report in-
clude mean accuracies in nested cross validation runs of non-
negative CP decomposition (n=100, leaving random 10% of
subjects/items out) and classification on held out subject/item
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Figure 5: Attention spaces for subject- and item-level TCA
decomposition. In the subject level space, strong learners
are highlighted in orange. For the item level space, orange
points indicate items that were learned by subjects at the end
of training.

embeddings (n=100, random 20% left out) using linear SVM.
Decompositions were fit using Hierarchical Alternating Least
Squares (HALS) method, with a stopping tolerance of 1e−5
for reconstruction error. For subject and item-level learning
classifications we omit the 9pt condition as learning perfor-
mance was at ceiling.

Predicting Subject-Level Learning Strong learners (by
median split on the number of learned items) occupy a unique
neighborhood in the behavior space, allowing us to correctly
differentiate between them in all of the three experimen-
tal conditions (0pt: Acc=0.71, SD=0.06; 3pt: Acc=0.76,
SD=0.06; 6pt: Acc=0.74, SD=0.06).

Predicting Item-Level Learning We were also able to pre-
dict learning outcomes for individual label-object mappings
in all experimental conditions (0pt: Acc=0.76, SD=0.01; 3pt:
Acc=0.62, SD=0.01; 6pt: Acc=0.77, SD=0.01).

Decoding Learning States From Eye Movements In pre-
trained item conditions, already-known items are mixed
alongside to-be-learned items during training. Stimuli and
their presentation order are identical in all 4 conditions,
the only difference being subjects’ relative degrees of prior
knowledge about label-object mappings. This means we can
compare attention behavior for specific items when a) they’re
already known, relative to b) when those same items are not
known.

We run three analyses (3vs0, 6vs0, and 9vs0), each testing
discrimination performance on pretrained items versus their
identical non-pretrained counterparts taken from the 0pt con-
dition. We find 3vs0 classification is at chance (Acc=0.52,
SD=0.01), meaning we’re unable to detect whether a learner
already knows a specific item. However, in both the 6vs0 and
9vs0 classifications we’re able to successfully decode item
knowledge from subjects’ gaze patterns above chance (6vs0:
Acc=0.62, SD=0.06; 9vs0: Acc=0.64, SD=0.06), suggesting
that while partial information in the 3pt condition may still
be used internally (e.g. mutual exclusivity judgements), there
may be a threshold in the amount of prior item knowledge
necessary to influence the structure of visual selection.

Associative Tensors In the previous decomposition, the
gaze axis of our input tensors coded distractor items in de-
creasing order of looking time (determined within a single
label onset window). See Figure 2. By structuring the tensor
in this way, we include no information about how those spe-
cific items had co-occurred with the target. We build a sep-
arate set of tensors which encode this information. Instead
of treating distractors as blank slates at each label onset, we
track label-object associative strengths, proportional to sub-
jects’ past accumulated sampling for those label-object pairs,
ordering these associates along the gaze axis in decreasing
associative order. These tensors allow higher decoding per-
formance for pretrained items compared to their blank-slate-
distractor counterparts (6vs0: Acc=0.65, SD=0.05; 9vs0:
Acc=0.68, SD=0.02; significant by Wilcoxon test, p <
0.001). As in the previous analyses, we’re still unable to de-
code 3vs0 pretrained items above chance using associative
tensors (Acc=0.52, SD=0.04).

Study 2: Fine-Grained Behavioral Analysis

Our analyses in Study 1 demonstrate how item knowledge
leaves a unique signature on eye movements, allowing us to
differentiate 3 classes of items: learned, not-learned, and pre-
trained. In Study 2, we look closer at what this signature
looks like. Since TCA factors are interpretable (and unique)
representations of the original input, we study how these so-
lutions might represent underlying cognitive processes, look-
ing closer at how behavior differs in these 3 types of items.
See Figure 6 for item-level decompositions across different
pretrained conditions.

We find a number of distinguishing patterns across the 3
item categories. For the learned items, in all pretraining con-
ditions, components coding for target looks show smooth in-
creases in gain over time, with corresponding smooth de-
creases in the distractor look components. On the other hand,
in not-learned items, looks to target demonstrate a more un-
even pattern. In the 3pt and 6pt conditions, not-learned items
show sudden drops in target looking at the second and fifth la-
bel onsets. Otherwise, their patterns are flat (early peaks are
as large as middle and late peaks). Like the learned items, the
not-learned items show similar decreases in distractor look-
ing over time. In the 0pt condition, attention for not-learned
items is dominated by distractor looking throughout training.
Pretrained items show similar general trends as the learned
items, namely gain in target looking and decrease in distrac-
tor. However, pretrained items distinguish themselves at 2
time points. In the 3pt condition, there are 2 drops in target
looking, one at the 3rd label onset and the other at the 6th
label onset. In the 6pt condition, these occur at the 4th and
6th labeling events. These drops are matched with mirror-
ing increases in distractor looking at these same time points.
These patterns likely reflect prior knowledge drawing atten-
tion away from useless information (i.e. the target, as they
already know it), directing it towards to-be-learned items.
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Figure 6: Item and time factors for a 3-way partition of items - 1) learned, 2) not learned, and 3) pretrained. Plots reflect
independent R = 2 decompositions, where input tensors contain items of a single type.

Discussion
Eye movements offer a rich behavioral signal which can be
used to extract detailed information about internal states of
knowledge. However, in most eyetracking studies only a
small proportion of the total variance is used. Here we’ve
applied TCA in order to make better use of the rich variation
found in natural gaze behavior, going beyond simple look-
ing measures as an index of learning. We link complex gaze
patterns to subjects’ internal knowledge as they learn label-
object pairs through statistical learning. Our methods offer a
general framework for extracting behavioral markers of learn-
ing, opening the door for future studies that use these markers
as part of their experimental designs. For example, experi-
mental stimuli might be presented contingently as a function
of subjects’ real-time knowledge states, as inferred through
their eye movements.

In future work we hope to extend our analyses from Study
2. Prior studies have shown that sustained, and stable, at-
tention in CSL is a strong predictor of learning at the sub-
ject level (Yu & Smith, 2011; Yu et al., 2012). The gaze
patterns we find in not-learned items may reflect sequential
aspects of instability at the item level, as evidenced by their
lack of smooth gain in sustained attention over time, as shown
in Figure 6. Because TCA models sequential similarity in
gaze dynamics, we can track how sustained attention is or-
ganized across labeling events for individual items. In con-
trast, measures of sustained attention that focus within a sin-
gle label onset window, or that take averages across labeling
events, are unable to resolve this level of fine-grained organi-
zation in attention behavior. Our results suggest that, at the
item level, failure to learn may be associated with a specific
form of low sustained attention – one that’s fluctuating in the
course of learning with occasional sudden drops in sustained
target looking. In future work, we will design experiments
to explicitly test this hypothesis. In general, data mining and
explicit hypothesis testing can go hand in hand to advance
our understanding of the learning mechanisms underlying
cross-situational learning. Data mining techniques allow us

to discover fine-grained behavioral patterns that we can form
specific hypotheses about and design well-controlled experi-
ments to test.

Another contribution of the present study was the applica-
tion of TCA in the analysis of fine-grained behaviors. Even
though similar embedding techniques have shown promise
in modeling complex sequential behavior (Dezfouli et al.,
2019), we suggest that our presented approach offers a
unique advantage when it comes to interpretability. The main
strength of TCA doesn’t lie in its absolute decoding perfor-
mance (other models will likely outperform it), but in the
transparent meaning of its decomposed factors. With TCA,
behavior and latent representations are related by a simple
linear map, where both behavior and latent spaces share a
common semantics in their organization. In contrast, while
it’s possible to interpret embeddings from more complex non-
linear estimators (e.g. Variational Autoencoders and LSTMs
with various disentanglement techniques), linking the organi-
zation of their solutions to the original behavioral processes is
less straightforward. Because of these unique properties, we
can systematically introduce top down constraints on TCA’s
solutions by restructuring inputs to address specific research
questions, tracking precisely how these manipulations influ-
ence the organization of the latent space. Our analyses with
associative tensors are a first step in that direction. In addition
to gaze, TCA can be applied to any type of high-density data
to extract uniquely predictive spatiotemporal patterns, and to
use these to infer latent variables and structures in cognitive
processes.
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