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Abstract 

In face recognition, the frequency of looking at the eyes, the 
most diagnostic feature, predicts better performance in 
adults but not in children, suggesting that different factors 
may underlie children’s face recognition performance. Here 
we test the hypothesis that eye movement consistency plays 
an important role during early learning stages. Through 
computational modelling that combines a deep neural 
network and a hidden Markov model that learns eye 
movement strategies by interacting with the network, we 
showed that consistency instead of eye movement pattern 
better predicted face recognition performance during early 
learning stages. Similarly, in human studies, children’s 
consistency but not pattern of eye movements predicted 
face recognition performance, and their eye movement 
consistency was associated with executive function abilities. 
Thus, learning to recognise faces initially involves 
developing a consistent visual routine, which depends on 
executive function abilities. This finding has important 
implications for learning in both healthy and clinical 
populations. 

Keywords: Eye movement; face recognition; deep neural 
network; hidden Markov model; entropy  

Introduction  
In face recognition, the eyes are the most diagnostic 
features, and adults who look at the eyes more often have 
better performance (Chuk, Crookes, Hayward, Chan, & 
Hsiao, 2017; Vinette, Gosselin, & Schyns, 2004). 
Nevertheless, in children the frequency of looking at the 
eyes does not predict better performance; also, children 
with Autism Spectrum Disorders (ASDs) did not differ 
from matched controls in the frequency of looking at the 
eyes in static face recognition regardless of their poorer 
performance (Wilson, Palermo, & Brock, 2012). Thus, 
factors other than looking at the eyes/diagnostic 
information may play a more important role during early 
stages of learning. 

Adults are shown to have observer-specific fixation 
behaviour in face recognition that persists over time, and 
deviation from this visual routine results in suboptimal 
performance (Peterson & Eckstein, 2013). This 

phenomenon may be because visual routines facilitate 
extraction of learned diagnostic features (perceptual 
learning; Nazir & O’Regan, 1990). Inconsistent eye 
movements during early learning may reflect difficulty in 
discovering and extracting diagnostic features to develop 
a visual routine, resulting in suboptimal performance. The 
discovery and extraction of diagnostic features may 
depend on cognitive abilities. Thus, early 
learners/children may have less consistent eye movements 
than experts/adults, and eye movement consistency may 
better predict their performance. Here we tested this 
hypothesis through both computational and experimental 
examinations. Computational modelling enables 
manipulation of factors that are difficult to control in 
human subjects, such as maturation difference between 
children and adults. It also offers explanations and 
predictions for human behaviour. We then conducted a 
human study to examine the predictions.  

The advance of deep neural networks (DNNs) has 
revolutionized the research on automatic face recognition 
(Wang & Deng, 2019) and cognitive modelling (Yamins et 
al., 2014). Nevertheless, DNNs typically assume that all 
aspects of the input can be processed simultaneously for 
efficiency and accuracy. This differs from how humans 
recognize visual objects through a sequence of eye 
fixations. Previous models of human face recognition that 
take eye fixations into account typically only use bottom-
up salience-based measures for fixation selection, and are 
not designed to model eye movement strategy learning 
(Barrington, Marks, Hsiao & Cottrell, 2008). More recent 
models simulate top-down visual attention by using the 
internal representation of a DNN at previous time steps 
to predict the next attended location/object for image 
captioning (Ablavatski, Lu, & Cai, 2017). However, their 
attention mechanism has been developed mainly for 
object detection in a cluttered scene. Similarly, Mnih, 
Heess, Graves, and Kavukcuoglu (2014) proposed a 
recurrent network for visual attention for finding digits in 
a cluttered image. To our knowledge, no previous model 
has implemented a top-down attention mechanism for 
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learning eye movement strategies for visual object/face 
recognition through integrating information across 
multiple fixations using deep learning.  

Here we proposed a novel computational model that 
combines a DNN and a hidden Markov model (HMM) 
to learn eye movement strategies including both sequences 
of fixation locations and associated attention window 
sizes (global/local attention) for recognition. The DNN 
learns optimal perceptual representations under the 
guidance of an attention mechanism summarized in an 
HMM, and the HMM learns optimal eye movement 
strategies through feedback from the DNN. In contrast to 
previous approaches that have an arbitrary attention 
mechanism, here we assume that fixations occur within 
subject-specific ROIs, since we are interested in individual 
differences in which object/facial features are important 
for recognition. We also include constraints of human 
perception, such as saccade noise and visual-spatial acuity 
of the retina, into our computational model. HMM is a 
statistical time-series model commonly used to model eye 
movement data. In particular, the Eye Movement analysis 
with Hidden Markov Models (EMHMM) method has 
recently been proposed for summarizing and quantifying 
an individual’s eye movement pattern (Chuk, Chan, & 
Hsiao, 2014). Specifically, a person’s eye movements can 
be modelled in terms of both person-specific regions of 
interest (ROIs) and transitions among the ROIs using an 
HMM. The hidden states correspond to the ROIs; 
parameters are estimated directly from data using a 
variational Bayesian approach that can automatically 
determine the optimal number of ROIs of the model. 
Individual HMMs can be clustered using the variational 
hierarchical EM algorithm (Coviello, Chan, & Lanckriet, 
2014) to reveal common patterns, such as the eyes-focused 
and nose-focused patterns in face recognition (Chan, 
Chan, Lee, & Hsiao, 2018; Figure 1). Similarities among 
individual patterns can be assessed quantitatively using 
data likelihood measures. Thus, this method is 
particularly suitable for examining the relationship 
between eye movements and other measures. 
 

 
Figure 1: Eyes-focused and nose-focused eye 

movement patterns discovered in Chan et al. (2018). 
  
EMHMM has been applied to face recognition research 

and uncovered novel findings not revealed by other 
methods. For example, the eyes-focused pattern was 
associated with better recognition performance than the 
nose-focused pattern (Chan et al., 2018). Also, individuals 
have preferred eye movement patterns for face 
recognition that are impervious to the influence of 

transitory mood changes (An & Hsiao, 2019) and able to 
predict both recognition performance and cognitive 
abilities, particularly executive and visual attention 
functions (Chan et al., 2018). These results suggest the 
possibility of using eye tracking for screening tests for 
cognitive deficits. 

Here we trained the DNN+HMM model to perform 
face recognition and examined how its performance was 
associated with eye movement pattern and consistency at 
different learning stages. We expected that consistency 
and pattern of eye movements would better predict 
performance at early and late learning stages respectively. 
We then recruited children as participants and examined 
whether their face recognition performance was better 
predicted by consistency than pattern of eye movements. 

Computational Modelling 

Methods  
Figure 2 shows the DNN+HMM model. An HMM 
generates a sequence of fixations, including location and 
spatial frequency (SF) scale to simulate attention window, 
according to its initial probabilities, transition matrix, and 
emission densities (assumed to be Gaussians). The 
attention window of each fixation is simulated by 
applying a Gaussian mask, centred on each fixation 
location/scale, to the input image. The masked images are 
fed into a multi-scale convolutional neural network 
(CNN) to extract image features at different SFs, which 
are then aggregated over time to form the visual short-
term memory. At each time step, a multilayer perceptron 
(MLP) uses the current visual memory to predict the face 
class. Finally, the loss functions of the predictions across 
time steps are combined for training. During training, the 
HMM and CNN simultaneously learn the most 
appropriate sequence of fixations and perceptual 
representations from these fixations for face recognition.  

We trained 80 models with different initializations, 
representing 80 individuals, using the aligned Labelled 
Faces in the Wild dataset (LFW-a, Wolf, Hassner, & 
Taigman, 2011). We selected the 100 most frequent people 
in the dataset (3,651 images), and used 90% of the data for 
training and 10% for validation. Each grayscale image 
was scaled to 64 pixels wide. Three SFs are used, 8, 16, 
and 32 cycles/face, which is the optimal SF range for face 
recognition (Costen, Parker, & Craw, 1996), with 
attention window sizes equivalent to 4° to 1° of visual 
angle (32 to 8 pixels) to simulate global/local attention. 
The attention window was simulated as a Gaussian mask 
centred at the fixation location (SD = half window size). 
We simulated saccade noise by adding Gaussian noise 
(SD = 0.375°, 3 pixels; Ohl, Brandt, & Kliegl, 2013) to 
each fixation. The SF attention process was implemented 
as a multi-scale CNN (for each SF, 2 layers of 3 x 3 filters 
with 8 and 16 channels) applied to an image pyramid of 
down-sampled images, with the original image used for 
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extracting high SF information and smaller images for 
low SF information. 
 

 
Figure 2: DNN+HMM for face recognition.  

 
We assumed 3 fixations in sequence for recognition to 

match previous human subject studies (e.g., Hsiao & 
Cottrell, 2008; Chuk et al., 2014; Chan et al., 2018), as 
early fixations are shown to be more important for 
recognition (Hsiao & Cottrell, 2008; Chuk et al., 2017). 
For simplicity, we assumed a deterministic sequence for 
each individual. After the first fixation, each additional 
fixation updated an internal visual short-term memory 
representation by taking the maximum between the two 
feature maps. The internal representation was decoded 
into a face class using a shared MLP classifier (2 layers, 40 
& 100 neurons). Thus, the model made 3 classifier 
predictions: from the first fixation, first 2 fixations, and 
all 3 fixations. Cross-entropy loss was applied to each 
prediction. The final loss was the weighted sum of these 
individual losses to make the first fixation the most 
informative, simulating face identification with as few 
fixations as possible. To encourage the model to move 
fixation locations towards informative features, the 
classification layers were regularized so that increasing the 
classifier weight on an informative feature has more 
penalty than moving a fixation towards the feature (which 
increases the strength of the image feature). Each 

convolution filter in the CNN was constrained to have 
unit norm. The fixation locations were also regularized to 
have a “centre” bias (Tatler, 2007). The model is 
initialized with 3 large ROIs with random location, and 
trained using the Adam optimizer (Kingma & Ba, 2014) 
for 500 epochs. 

We assessed the models’ eye movement behaviour after 
different numbers of training epochs. Eye movement 
consistency was assessed using the HMM’s overall 
entropy (Cover & Thomas, 2006). Entropy is a measure 
of predictability: higher entropy indicates more random 
eye movements. Eye movement pattern was assessed using 
EMHMM. Specifically, all individual HMMs were 
clustered to discover two representative patterns A and B. 
Then, for each individual HMM, we defined AB scale as 
(A - B)/(|A| + |B|), where A and B referred to the model’s 
data log-likelihood of pattern A and B respectively. Each 
model’s similarity along the contrast between pattern A 
and B was quantified using AB scale (Chan et al., 2018). 

Results  
Figure 3 shows an example model after training. The 
ellipses represent the fixation ROIs (2 SD contours of the 
Gaussian emissions); the cross represents the attention 
window size, where larger windows correspond to using 
lower SF. This example model looks at the face centre 
using global attention (low SF), and then the eyes using 
local attention (medium SF). The CNN features selected 
in the MLP are visualized via the weight magnitudes of 
the first MLP layer, showing the use of global features on 
the eyes and nose, and local features on the eyes. 
 

 
Figure 3: Example of a DNN+HMM after training. 

 
We applied clustering to obtain two representative 

patterns for well-trained (adult) models at epoch 500, and 
two representative patterns for partially-trained (child) 
models at epoch 100 (Figure 4). The well-trained models 
exhibited an eyes-focused (pattern A) and a nose-focused 
strategy (pattern B), which differed significantly: the eyes-
focused group’s data log-likelihood given the eyes-
focused HMM was higher than that given the nose-
focused HMM, t(36) = 15.82, p < .001, d = 2.60; similarly 
for the nose-focused group, t(42) = 7.25, p < .001, d = 
1.11. The partially-trained models exhibited similar 
strategies that also differed from each other (test on the 
eyes-focused group, t(31) = 7.15, p < .001, d = 1.26; test 
on the nose-focused group, t(47) = 15.91, p < .001, d 
=2.30), albeit with much larger ROIs. In the well-trained 
models, those with pattern A (eye-focused) exhibited 
higher accuracy than pattern B, t(78) = 3.33, p = .001, d = 
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.75, MA = .534, MB = .500, and accuracy was positively 
correlated with AB scale, p < 0.001, R2 = .161 (Figure 5 
left). In contrast, the patterns A and B of partially-trained 
models did not differ in accuracy on the validation data, 
t(78) = .72, p = .475, d = .16, MA = .464, MB = .457; the 
AB scale was not correlated with accuracy, R2 = .161, p  = 
.711. Thus, eye movement pattern was correlated with 
accuracy in well-trained models, but not partially-trained 
models. 

Finally, we examined eye movement consistency 
(Figure 5 right). The entropy of partially-trained models 
was negatively correlated with accuracy, p < .001 R2 = 
.205. In contrast, well-trained models did not show 
correlation between entropy and accuracy, as most well-
trained models have converged to consistent, low entropy 
patterns. 

 

 
Figure 4: Representative HMMs for (top) partially 

trained (100 epochs) and (bottom) well-trained models 
(500 epochs). 

 

 
Figure 5: Entropy vs. AB scale and entropy vs. 

accuracy for (top) partially-trained and (bottom) well-
trained models. 

Experimental Study 

Methods  
Participants were 89 primary school students (40 females) 
from Hong Kong, aged 6 to 11 (M = 7.84). They had 

normal or corrected to normal vision and no cognitive 
deficits. They performed face recognition and cognitive 
ability tests with the order counterbalanced. 

In the face recognition task, the stimuli consisted of 64 
coloured frontal-view Asian adult face images with a 
neutral expression (half female). They were scaled and 
aligned to maintain the same inter-pupil distance, and 
cropped according to the face shape. The task consisted 
of two blocks, each with a study and a test phase. In the 
study phase, participants viewed 16 faces one at a time, 
each for 3 s, and were instructed to remember them. In the 
recognition phase, participants were presented with the 16 
old and 16 new faces one at a time and asked to judge 
whether they saw the face in the study phase by a button 
response. The face was shown until response. Each trial 
began with a central fixation. A face was then presented 
either on the left or right of the screen (determined 
randomly). With a 60 cm viewing distance, the face 
spanned 8° of visual angle, and the face centre was 9° of 
visual angle away from the screen centre. Different images 
were used in the two blocks. Participants’ eye movements 
were recorded using an SMI RED-n Scientific eye tracker 
(SensoMotoric Instruments GmbH). The right eye was 
tracked with 60 Hz sampling rate. A chinrest was used to 
minimize head movement. EMHMM was used to analyse 
eye movement data: each participant’s data in the test 
phase was summarized into an HMM (see Chuk et al., 
2017 for details). Following Chan et al. (2018), and also 
to match the modelling procedure, we used the first 3 
fixations in each trial to train the HMM. Then we 
clustered all HMMs into two representative patterns, and 
calculated the AB scale as the modelling. In addition, we 
calculated each HMM’s overall entropy as a measure of 
eye movement consistency.  

The flanker task was used to measure selective attention 
ability (Eriksen & Eriksen, 1974). Each stimulus consisted 
of a target arrow pointing to either the right or left, two 
flanker arrows to the target’s left, and two to the right. 
Congruent stimuli had flankers pointing in the same 
direction as the target; incongruent stimuli had flankers 
pointing in the opposite direction. Participants judged the 
target arrow direction by pressing keys. There were 120 
trials. We measured the flanker effect as the performance 
difference between congruent and incongruent trials. 

Spatial/verbal one-back tasks (Jaeggi, Buschkuehl, 
Perrig, & Meier, 2010) were used to assess working 
memory. In the spatial one-back task, in each trial, a blue 
square was presented at either above, to the right, to the 
left, or below a fixation cross for 500 ms, with an inter-
trial interval of 2500 ms. Participants responded whether 
the square was at the same location as the previous trial 
by pressing buttons. There were 63 trials. The verbal one-
back task had a similar procedure except that participants 
viewed a number presented at the screen centre instead of 
a blue square. D-prime and correct RT were measured. 

Trail making test (Reitan, 1958) was used to assess 
visual attention and task switching ability. In part A, 
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participants connected 25 circles from number 1 to 25 in 
a sequential order. In part B, participants connected 
numbers and alphabets alternatively in a sequential order. 
The tasks were given on two separate sheets of paper. The 
completion time and the number of errors were recorded. 

Tower of London (TOL) test (Culbertson & 
Zillmer,1999) assessed planning and problem-solving 
abilities. Participants were presented with a start state 
(with 3 pegs and 3 beads) and a goal state and were 
instructed to move beads in the start state one at a time to 
reach the goal state using the least number of moves in 120 
s. There were 10 trials with increasing difficulty. The 
percentage of completed trials, average number of excess 
moves, and correct RT were measured. 

Results  
Two children could not finish the face recognition and 
TOL task; one child could not finish the one-back task. 
EMHMM revealed two common patterns (Figure 6): the 
eyes-focused pattern (n = 37) mainly switched between the 
two eyes, with occasional fixations at the face centre, 
whereas the nose-focused pattern (n = 50) had more 
dispersed ROIs at the face centre. The two patterns 
differed significantly (test on the eyes-focused group; t(36) 
= 16.04, p < .001, d = 2.64; test on the nose-focused group, 
t(49) = 4.89, p < .001, d = .69). We quantified individual 
patterns’ similarities along the eyes- and nose-focused 
pattern dimension using the EN scale (E – N)/(|E| + |N|), 
where E and N stand for the data log-likelihood of the 
eyes- and nose-focused HMM respectively. ANCOVA 
was used on recognition performance D’ with eye 
movement pattern as a between-subject variable and age 
as a covariate. Participants adopting the two patterns did 
not differ in performance, F(1, 83) = .31, p = .58. There 
was no correlation between EN scale and performance 
with age controlled, r(83) = .12, p = .26. (Figure 7a & c). 
In contrast, when we divided participants into high and 
low eye movement entropy groups, those with low 
entropy performed better, F(1, 83) = 5.54, p = .021, ɳ"#	= 
.063, and entropy was correlated with performance with 
age controlled, r(83) = -.29, p = 007 (Figure 7b). 

 

 
Figure 6. The eyes-focused (top) and nose-focused 

(bottom) representative strategies derived by clustering. 
 

Among the cognitive ability measures, face recognition 
performance was correlated with the flanker effect in 
correct RT, r(86) = .23, p = .030. To examine whether eye 
movement entropy or flanker effect was a better predictor 
for recognition performance, a three-stage hierarchical 
regression was conducted with age and the flanker effect 
entered before eye movement entropy, and entropy was 
the only significant predictor, DR2 = .205, F(1, 82) = 5.78, 
p = .018 (Table 1). Tests for multicollinearity indicated a 
low level of multicollinearity among entered variables. 

 

 
Figure 7: Recognition performance between (a) eyes- 

vs. nose-focused groups; (b) low vs. high entropy groups 
(Error bars are 95% CIs. * p < 0.05) (c) Recognition 

performance was correlated with overall eye movement 
entropy, but not eye movement pattern (EN scale). 

 
Table 1. Summary of hierarchical regression analysis  

 

 
 
We then examined what cognitive abilities best 

accounted for consistency and pattern of children’s eye 
movements through stepwise hierarchical multiple 
regression analysis with age entered as a covariate at the 
first step. Tests indicated a low level of multicollinearity 
among the variables. Eye movement pattern/EN scale was 
best predicted by verbal one-back D’, R2 = .075, F(1, 79) 
= 3.19, p = .047. In contrast, eye movement entropy was 
best predicted by flanker effect in correct RT, β = -.29, t 
= -2.67, p = .009, and TOL % of completed trials, β = .25, 
t = 2.36, p = .021; R2 = .013, F(3, 78) = 3.75, p = .014. 
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Thus, eye movement pattern may be related to working 
memory, whereas eye movement consistency was 
associated with selective attention and executive function. 

Discussion 
In perceptual expertise research, it has long been assumed 
that looking at diagnostic features leads to better 
performance (Chuk et al., 2017). However, typically we 
can only attend to features one at a time, and this requires 
eye movement planning. Recent research has shown that 
people exhibit person-specific eye movement patterns in 
face recognition, and deviation from such visual routines 
can impair performance (Peterson & Eckstein, 2013). 
While it suggests the importance of visual routines, how 
eye movement consistency contributes to performance 
has been overlooked in the literature. Here we aimed to 
fill this gap by testing the hypothesis that eye movement 
consistency plays an important role during early learning, 
since inconsistent eye fixations during early learning, even 
if landing on diagnostic regions, can signify difficulty in 
discovering and extracting diagnostic features to develop 
a visual routine, leading to suboptimal performance. 
Also, once a suboptimal routine is formed, it can become 
difficult to change. Indeed, adult face recognition 
performance has limited plasticity for improvement 
through training (Tree et al., 2017), and this phenomenon 
may be related to a stable visual routine. 

Consistent with our hypothesis, our DNN+HMM 
model trained for face recognition showed that during 
early training, the model’s performance was well 
predicted by consistency but not pattern of eye 
movements. In contrast, in fully trained models, eye 
movement pattern predicted performance whereas eye 
movement consistency did not. Similarly, in our human 
data, children’s recognition performance was well 
predicted by eye movement consistency with age and 
cognitive abilities controlled, but not by eye movement 
pattern. Previous studies with adult participants have 
shown that eye movement pattern was predictive of 
recognition performance (Chuk et al., 2017; Chan et al., 
2018). We reanalysed the data to examine the effect of eye 
movement consistency. Stepwise multiple regression 
analysis using data from Chuk et al. (2017) showed that 
recognition performance was best predicted by eye 
movement pattern, R2 = 21.8%, p = .001, and adding 
consistency did not significantly account for additional 
variance, DR2 = .002, p = .726. Similarly, using data from 
Chan et al. (2018), recognition performance was 
correlated with eye movement pattern, r = -.25, p = .041, 
but not consistency. Thus, eye movement consistency 
predicts early learning performance, whereas eye 
movement pattern predicts late, expert-level performance.  

The modelling data suggested that during early 
learning, some models may have fixations at diagnostic 
features with an inappropriate attention window size, 
resulting in suboptimal performance and lower likelihood 
of selecting the same location. Thus, at this stage, 

fixations on diagnostic features did not reflect better 
performance. In contrast, once an optimal fixation 
location and attention window size combination was 
selected, it was likely to be selected again, leading to more 
consistent eye movements. Models with difficulty 
discovering optimal feature location and attention 
window size combinations might end up with a 
suboptimal eye movement pattern. Thus, when this 
process continued and all models converged to a similar 
level of eye movement consistency, performance became 
better predicted by eye movement pattern. In addition, in 
our human data, children’s eye movement consistency 
was best predicted by executive function abilities; 
similarly, adults' eye movement pattern was associated 
with executive function abilities (Chan et al., 2018). These 
findings suggest that executive function abilities may 
underlie this learning process, affecting eye movement 
consistency in children and being reflected in eye 
movement pattern in adults. It also suggests that deficits 
in executive functions may underlie face recognition 
difficulties. Children with recognition difficulties, such as 
autism, may benefit from training to more efficiently 
develop a consistent eye movement pattern that follows 
the optimal strategy. Future work will examine these 
possibilities. 

In the current modelling, to focus our examinations on 
the interaction between DNN and HMM during learning, 
the transition matrix and prior were fixed so that the ROI 
sequence was deterministic. Future work may allow the 
transition matrix and prior to be learned by using 
Gumbel-Softmax reparameterization (Jang, Gu, & Poole, 
2017) of these probability models so that the ROI 
sequences will be generated according to the prior and 
transition matrix. Also, bottom-up attention may be 
simulated by learning a conditional transition matrix that 
takes previously attended features as input, so that 
attention can be guided by both bottom-up and top-down 
information. We may train a face-space embedding using 
triplet loss (Wang & Deng, 2019) to facilitate 
generalization with a large number of face labels. These 
may enhance the model’s cognitive plausibility in future 
studies. 

In conclusion, through computational and 
experimental examinations, we show that learning to 
recognise faces initially involves developing a consistent 
visual routine, which depends on executive function 
abilities. As the result, children’s face recognition 
performance is better predicted by eye movement 
consistency rather than eye movement pattern, in contrast 
to adult face recognition. These findings have significant 
implications for ways to enhance learning in both healthy 
and clinical populations. The proposed computational 
model can be applied to other learning tasks, further 
increasing the impact. 
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