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Abstract

Face processing plays a critical role in human social life, from
differentiating friends from enemies to choosing a life mate.
In this work, we leverage various computer vision techniques,
combined with human assessments of similarity between pairs
of faces, to investigate human face representation. We find that
combining a shape- and texture-feature based model (Active
Appearance Model) with a particular form of metric learning,
not only achieves the best performance in predicting human
similarity judgments on held-out data (both compared to other
algorithms and to humans), but also performs better or compa-
rable to alternative approaches in modeling human social trait
judgment (e.g. trustworthiness, attractiveness) and affective
assessment (e.g. happy, angry, sad). This analysis yields several
scientific findings: (1) facial similarity judgments rely on a
relative small number of facial features (8-12), (2) race- and
gender-informative features play a prominent role in similarity
perception, (3) similarity-relevant features alone are insuffi-
cient to capture human face representation, in particular some
affective features missing from similarity judgments are also
necessary for constructing the complete psychological face rep-
resentation.
Keywords: Face Space; Similarity Judgement; Social Percep-
tion; First Impressions; Computer Vision

Introduction
Face processing is essential to human social cognition, whether
recognizing individuals, identifying emotional states, or as-
sessing social traits such as attractiveness and trustworthiness.
Having a computational account of how humans psycholog-
ically represent faces is essential for developing and testing
scientific hypotheses about human face processing, and for de-
veloping machine learning and artificial intelligence systems
that either socially interact with humans (e.g. social robots) or
mediate social interactions among humans (e.g. dating apps
and professional network websites)

An implicit assumption in the psychological study of human
face processing is the existence of a “face space” (Valentine,
1991), a multidimensional vector space consisting of faces
whose vector coordinates correspond to perceived facial prop-
erties or features, and the distance between faces determines
their perceived similarity. Tools like Multidimensional Scaling
(MDS) (Shepard, 1962) have been commonly used to leverage
similarity judgments to map (embed) faces into a common
vector space representation; such representations have been

used to infer mental representations so as to examine percep-
tual categorization of race (MacLin, Peterson, Hashman, &
Flach, 2009), to examine the differences in representation be-
tween adults and children (Nishimura, Maurer, & Gao, 2009),
and to show that faces rated more typical are located closer
to the origin while distinctive faces are farther from the ori-
gin (Johnston, Milne, Williams, & Hosie, 1997). Despite its
broad use (Dailey, Cottrell, & Busey, 1999; Nestor, Plaut, &
Behrmann, 2016; Nishimura et al., 2009; Shepard, 1962; Torg-
erson, 1965), MDS suffers from several limitations. Notably,
the mapping of faces into this embedding space is abstract,
making it difficult to interpret the features; it is non-invertible,
offering no easy way to visualize the face corresponding to
an arbitrary point in the space; it is non-generalizable, such
that novel faces not used in the learning of the embedding
itself cannot be later projected into the space; it is impracti-
cal for assessing the true dimensionality of the psychological
face space, since training MDS-type algorithms are extremely
data-intense.

Separately, computer vision and machine learning tech-
niques have been used to learn to predict (or even manipulate)
human judgment of different face attributes, e.g. memorability
(Xiao, Oliva, Torralba, & Isola, 2011; Khosla, Bainbridge,
Torralba, & Oliva, 2013), trustworthiness, attractiveness, and
other social impressions (Song, Li, Atalla, & Cottrell, 2017;
Guan, Ryali, & Yu, 2018). However, these work typically
do not relate the algorithmic representation of faces to the
human face representation, in particular making no attempt to
relate distance in the latent representation to human-reported
dissimilarity between faces.

Here, we adopt a novel approach, by initializing the face
vector space using the latent coordinates of faces generated
by different computer vision algorithms, then linearly trans-
forming that vector space such that Euclidean distance in that
transformed space recovers human-reported pairwise dissim-
ilarity rating as well as possible – we also include a regular-
ization term that explicitly encourages efficient representation.
The computer vision algorithms we consider include the Ac-
tive Appearance Model (AAM) (Cootes, Edwards, & Taylor,
2001), VGG16 (Simonyan & Zisserman, 2014), and an ab-
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Figure 1: A. Schematic of a trial from data collection. B, C: Low-similarity examples. D, E: High-similarity examples. F.
Histogram of empirical dissimilarity scores.

stract representation obtained through MDS. As we will show,
the AAM-based representation not only predicts human simi-
larity judgements on held-out data better than the other models
as well as other humans who have assessed similarity of the
same face pairs, but also performs best in predicting human
social trait (e.g. trustworthiness, attractiveness) and affective
judgments (e.g. happy, sad, angry).

Using the AAM-based representation, we then investigate
several scientific questions, such as how many facial features
are actually involved in human perception of how faces differ
from one another, whether features that differentiate demo-
graphic groups, in particular race and gender, play an espe-
cially prominent role in dissimilarity judgments, and whether
similarity judgments utilize features that span the entire psy-
chological face space (or whether there are residual features
that cannot be excavated using only similarity judgments).

Results
We collected human similarity judgments on pairs of face
images through Amazon Mechanical Turk (restricted to partic-
ipants based in the US). The data set (Ma, Correll, & Witten-
brink, 2015) consists of 595 neutral-expression face images
that are gender- and race-balanced (see Methods). Figure 1
shows example image pairs with high and low similarity scores.
We find that low-similarity image pairs often differ in race or
gender categories, as seen in both low-similarity examples (B,
C), while high-similarity pairs can agree on race and gender
(D), or not (E). This suggests that human similarity judgments
both depend on facial features distinguishing demographic
categories and other more subtle structural features.

To model human face representation, we use computer
vision models to specify the initial vector space. We first
consider AAM (Cootes et al., 2001; Guan et al., 2018; Tz-
imiropoulos & Pantic, 2013), which computes “shape fea-
tures”, (x,y) coordinates of landmarks that denote invariant
parts of faces such as contours of the eyes, eyebrows, nose,
mouths, and “texture features”, which are (grayscale) pixel
values of each face image warped to have the shape (landmark
locations) align with those of the average face in the training
dataset. We perform joint principal component analysis (PCA)

on the shape and texture features, and retain the first 70 com-
ponents – as shorthand, we refer to this original AAM space as
X . We then linearly transform X so that Euclidean distances
between face images are as close to human dissimilarity scores
as possible – formally, this is known as metric learning (see
Methods).

A simple way of doing metric learning is to linearly re-scale
the importance of each feature (basis vector) in X , i.e. humans
may weigh different features differently than the computer
vision algorithm. However, it may be that humans actually
utilize a different set of features altogether. Formally, we en-
rich our model by allowing the possibility that psychologically
relevant features (basis vectors) are linear transformations of
the machine vision features (basis vectors), equivalent to first
rotating the original feature axes, followed by rescaling ac-
cording to psychological importance in similarity judgment –
we denote this linear transformation W.

Additionally, we consider the possibility that humans are
efficient in the number of features used to represent faces,
which we implement through a regularization term in the ob-
jective function, by explicitly suppressing the number of basis
vectors that significantly contribute to perceptual dissimilar-
ity. Specifically, we penalize the trace of W, or the sum of
the squared values of the scaling factors (see Methods). In
addition, we also consider two more common forms of regular-
ization, based on penalizing the element-wise `1 and `2 norms
of the transformation matrix (see Methods), which have the
undesirable effect of penalizing not only the scaling factors
but the amount of rotation allowed before scaling, and not
being especially effective at penalizing the scaling factors.

To compare how well different models can capture/predict
human similarity perception, we compute the correlation co-
efficient (c.c.) between model predicted ratings and human
dissimilarity scores on held-out face pairs. As a baseline
comparison, the average c.c. between one rater’s rating of
an image pair and the average rating of the remaining par-
ticipants on the same image is 0.416. The original AAM
representation captures human similarity judgment reasonably
well (rtest = 0.43), and is significantly improved by the linear
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Figure 2: A. Effect of regularization on AAM representation. B. Evaluation of various representations; here VGG16
representations correspond to their trace regularized transformed representations. A, B evaluated on validation data
(train:validation:test=8:1:1).

transformation without regularization (rtest = 0.532). Further
prediction improvement is obtained via all three forms of regu-
larization (rtest = 0.543 in all cases) on W, all of which prevent
overfitting to training data.

In addition to AAM, we also use deep neural networks
to initialize the face space (see Methods). We use VGG16
(Simonyan & Zisserman, 2014) trained on ImageNet (gen-
eral object categorization), the best known deep neural net-
work representation for supporting a linear model of human
social trait judgement of faces (Song et al., 2017); we also
include VGG16 trained on VGGFace2 (face recognition) (Cao,
Shen, Xie, Parkhi, & Zisserman, 2018). Both of these neural
networks achieve much worse performance (untransformed:
rVGG16: Imagenet

test = 0.1,rVGG16: VGGFace2
test = 0.31; transformed:

rVGG16: Imagenet
test = 0.46,rVGG16: VGGFace2

test = 0.53) than trans-
formed AAM, when only a dozen or so features are included,
though they are substantially improved from their untrans-
formed representations; asymptotically, VGG16 trained on
VGGFace2 does a comparable job to transformed AAM (Fig-
ure 2B) – it is interesting to note this model cannot efficiently
capture similarity judgments even under trace regularization.
We also include a version of MDS (see Methods) for compar-
ison. MDS is comparable to human c.c. with two features,
though much worse than computer vision-based algorithms,
but its performance steadily deteriorates with more features,
reflecting data insufficiency in the absence of an image model.

It is notable that the regularized methods do much better
than the c.c. between human ratings on the same image. Hu-
man c.c. might have been expected to be a cap on performance,
but because human ratings both suffer from within-subject
noise, and inter-subject inconsistency, as well as other possi-
ble violations of a metric space (e.g. violation of the triangle
inequality), one person’s rating can be a rather poor predictor
of how others will rate the similarity of a face pair; our algo-
rithm can outperform this measure on a novel face because
it knows where each face “lives” in the face space relative to
other faces, and thus extrapolate from neighboring faces’ data
to estimate the distance between two new data points.

Dimensionality of Human Similarity Judgment Space.
Among the three types of regularization, we anticipate that

trace regularization should be particularly effective in finding
a small set of features. Figure 2A shows that this is indeed
the case. Trace-regularized AAM achieves near-asymptotic
performance with many fewer features (most important fea-
tures first, as indexed by the scaling factor in the transformed
space) than `1- and `2-regularized AAM. Using only the first
8 features achieves nearly as good of dissimilarity prediction
performance (r = 0.557) as using all features (r = 0.561),
while using the first 12 features (r = 0.561) is indistinguish-
able from using all features. Due to the overall superiority
of the trace-regularized AAM method in capturing human
similarity judgments, we primarily focus on this model in the
remainder of the paper (we also sometimes refer to it simply
as transformed AAM).

Race- and Gender-Related Features in Human Similar-
ity Judgment. Figure 3A shows synthetic faces generated
along each of the first 8 features of the transformed AAM
space (ordered by descending value of their scaling factors).
Note that the scaling factor of a dimension is indicative of
its perceptual importance – Figure 3B shows that the average
perceptual dissimilarity projected along each dimension (quan-
tifying the average importance of this dimension relative to
the overall dissimilarity score) is monotonically related to the
scaling factor. All the features appear to be holistic rather than
parts-based, and demographic information such as race and
gender is clearly present in the first few coordinates, although
other more subtle, structural features are also apparent among
these featural dimensions. To assess the importance of race-
and gender-related features, we consider the average percep-
tual dissimilarity between subgroups. We note the average
model-predicted dissimilarity score between the average male
and female faces (0.50), between black and white faces (0.63),
between Asian and black faces (0.57), between Asian and His-
panic faces (0.50), and between Asian and white faces (0.57)
are all quite substantial, given that the empirical dissimilarity
scores are normalized to have a maximal value of 1 and a
minimal value of 0 (see Figure 1F for histogram). To quan-
tify this more precisely, we consider the 4D subspace of X
spanned by the axis that differentiates male and female faces
(using linear-discriminant analysis, or LDA), and the 3D LDA
subspace that best linearly discriminates among the four racial

1082



groups. We fit a linear transformation W within only this
subspace – we find that the c.c. between this model-predicted
dissimilarity and human-reported dissimilarity on held-out
face pairs is r = 0.44, or 81% of the performance of using
the full model. This indicates race- and gender-informative
features figure prominently but not exclusively in human dis-
similarity judgments. However, we note that this measure may
be somewhat inflated, as the trace regularization suppresses
the importance of other features that might also be good at dif-
ferentiating individual faces but do not add much extra value –
in the absence of these race- and gender-informative features,
those other features may be able to at least partly make up for
the lost capacity and thus achieve c.c. much higher than 19%
of the full model.

Face Space: Beyond Similarity Judgments. Implicit in
the concept of a similarity-based “face space” is that features
important for similarity judgments also support all other kinds
of face-related processing (Valentine, 1991; Valentine, Lewis,
& Hills, 2016), such as race and gender categorization, social
trait perception, and affective judgments (Guan et al., 2018).
Using linear modeling (LDA on categorical discrimination and
linear regression on continuous predictions), we can compare
how well using only the similarity-relevant features (first 8
dimensions of the transformed AAM, denoted as Z) compares
to the original AAM space X , in performing other kinds of
tasks. For comparison, we also include VGG16 (trained on
either ImageNet or VGGFace2), and MDS. We find that X is
better or comparable to both deep neural nets and MDS on all
tasks (Figure 4A: social trait perception, Figure 4B: race and
gender classification, Figure 4C: affect judgements). Com-
pared to X , Z does slightly worse on social trait perception,
similarly on race and slightly worse on gender, and consid-
erably worse on all affective judgments except for “surprise.”
The general tendency of X doing slightly better than Z indi-
cates that certain features unimportant for similarity judgment
play a significant role in supporting the other face-based tasks,
in particular affective judgments. These results suggest that,
in general, it is inadequate to use only similarity judgments to
reconstruct the psychological face space, if the goal is to study
also other aspects of human face processing.

Methods
Data Collection. We collected human similarity judgments
on pairs of face images through Amazon Mechanical Turk.
The stimuli were 595 neutral-expression face images from the
Chicago Face Database (CFD) (Ma et al., 2015), comprising
109 (East) Asian (57 female), 197 black (104 female), 108
Hispanic (56 female), and 181 white (90 female) faces. We ran-
domly sampled pairs of images to produce 23,400 unique pairs,
which were rated by 682 raters to produce 138,533 ratings in
total. Participants rated the similarity of a pair of face images
on a Likert scale from 1 (maximally dissimilar) to 9 (maxi-
mally similar); image presentation order was randomized, and
subjects rated each image pair twice to counter within-subject
variability (Vul & Pashler, 2008; Steegen, Dewitte, Tuerlinckx,
& Vanpaemel, 2014). To identify non-attentive participants,
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Figure 3: Transformed AAM features. A. Synthetic faces
along each of the first 8 features (largest eigenvalues of W).
The stepsize in each direction, ∆, is constant, so that every
left/right face compared to the middle face evokes the same
amount of perceptual dissimilarity as predicted by the model.
B. Scaling factors vs average model predicted perceptual dis-
similarities in trAAM along each dimension. C. Scaling fac-
tors vs c.c between model predicted and actual dissimilarity
scores on test data.

we included a catch question, where subjects had to indicate if
two identical images were the same or not.

Participant Inclusion/Exclusion Criteria. 86 raters who
failed the catch question were excluded. 4 participants who
rated far fewer pairs (< 30) than the other participants (> 200
pairs) were excluded. We also excluded (15) participants
whose c.c. of ratings versus other raters on the same images
were at least two standard deviations below population mean.
We also excluded (32) participants whose response entropy
was at least two standard deviations below population mean.
Included in the analysis are 111,893 ratings from 551 partici-
pants on 22,500 unique pairs of images (comprising 12.73%
of the total possible pairs).

Conversion of Similarity to Dissimilarity Measures. To
relate similarity ratings to distances in the face space, we first
convert similarity into dissimilarity scores. Let sr

(i, j) denote the
similarity rating for images i and j from participant r; we con-
vert it to dissimilarity as dr

(i, j) = 10− sr
(i, j). We then normalize

it for each participant r, d̃r
(i, j) =

dr
(i, j)−mini, j dr

(i, j)
maxi, j dr

(i, j)−mini, j dr
(i, j)

. For each

image pair (i, j), we average the normalized dissimilarity rat-
ings to produce an average score d̄(i, j) = ∑r d̃r

(i, j). In the main
text, we simply refer to the average dissimilarity score as the
dissimilarity score.
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Computer Vision Representation: AAM. AAM is a well-
established machine vision technique that reconstructs images
well, generates realistic synthetic faces (Edwards, Cootes, &
Taylor, 1998), and appears to have neural relevance (Chang
& Tsao, 2017). AAM consists of shape features, or the (x,y)
coordinates of a set of consistently defined landmarks (e.g. con-
tours of eyes, noise, lips), and texture features, or the grayscale
pixel values of a warped version of the image after aligning
the landmarks to the average landmark locations across the
data set. We train AAM using faces from both CFD and 2222
US adult face images from Google Images (Bainbridge, Isola,
& Oliva, 2013). We use the free software Face++ 1 to la-
bels 83 landmarks on each face. We apply combined PCA to
all the shape and texture features, yielding a 70-dimensional
representation that captures 98% of the variance.

Computer Vision Representation: VGG16. VGG16 is a
deep Convolution Neural Network (CNN) used for general
object recognition (Simonyan & Zisserman, 2014). It has
been trained using the Imagenet dataset containing 1000 cate-
gories of objects, totalling 1.3 million images (Russakovsky
et al., 2015; Deng et al., 2009). Once a face image used in
our similarity judgment task is fed into this network, we use
the response in the penultimate layer as the image’s initial
representation. We also use the same architecture trained on
VGGFace2 (Cao et al., 2018) (face recognition). We then
perform PCA on extracted features to reduce dimensionality:
we retain features capturing 98% of the variance in the CFD
dataset (Imagnet-100 PC’s, VGGFace2-66 PC’s).

Metric Learning. We assume human dissimilarity scores
are noisy versions of f (xi,x j), where f (xi,x j) = (xi −
x j)

ᵀW(xi− x j)+ b, where W is constrained to be positive
semidefinite (PSD; i.e. non-negative eigenvalues) and b≥ 0 is
a constant offset (b has a fitted value of 0.47 in our main model,
trace-regularized AAM). Since W is PSD, it can be diagonal-
ized as W = UᵀΛU, where U is an orthogonal transformation
and Λ = diag(λ1, . . . ,λn), where λi ≥ 0 are the eigenvalues
of W 2. Constraining W to be a diagonal matrix means that
the new coordinate system consists of rescaling the original
axes, but no rotations are allowed. Allowing W to be any PSD
matrix means the original basis vectors can be rotated and re-
flected (U consists of the eigenvectors of W and specifies the
directions of the new basis vectors), and then multiplicatively
scaled by the square root of the entries of Λ (the eigenvalues
of W) to arrive at the new basis vectors. Allowing W to have
0 as an eigenvalue means that some featural dimensions in the
transformed space are allowed to shrink to nothing and thus
play no role in perceived dissimilarities.

We then aim to minimize prediction error while regularizing

1https://www.faceplusplus.com
2Note that we’re actually modeling the Euclidean distance squared

as the the dissimilarity score, as we found this to be empirically better.
We may interpret this as modeling a fixed transformation or "link"
function of the dissimilarity score (specifically, (d̄(i, j)−b)0.5) as the
Euclidean distance. We experimented with many other monotonic
link functions but did not obtain better results, and will not discuss
them here.

the `1 or `2 norm of W. To implement `1 and `2 regulariza-
tion, we minimize the following objective function, denoting
x(i, j) = (xi−x j) and subject to W� 0, b≥ 0,

min
W,b

∑
i, j
(d̄(i, j)−xᵀ(i, j)Wx(i, j)−b)2 +α‖W‖p

where p = 1 corresponds to `1 norm, and p = 2 corresponds
to `2 norm. No regularization can be considered a special case
(α = 0). This is a convex optimization problem, and can be
solved via semi-definite programming (we use CVX (Grant
& Boyd, 2014, 2008)). We set the value of the regulariza-
tion coefficient α using line search and evaluation on held-out
validation data (choose α that gives the best dissimilarity pre-
diction on the validation set).

To find a small set of interpretable features, we need to
suppress the dimensionality of W (non-zero eigenvalues). `1
and `2 regularization are inappropriate because in the former
case, both the rotation (U) and the scaling (Λ) components
are restricted, while in the latter, the regularization term is not
effective at encouraging the eigenvalues to go to zero, ‖W‖2 =√

tr(WᵀW) =
√

tr
(
(UᵀΛU)(UᵀΛU)

)
=
√

∑i λ2
i . To reduce

the number of basis vectors (non-zero eigenvalues), we pe-
nalize the sum of the eigenvalues, or trace(Λ) = trace(W),
resulting in another convex optimization problem (subject to
W� 0, b≥ 0):

min
W,b

∑
i, j
(d̄(i, j)−xᵀ(i, j)Wx(i, j)−b)2 +λ trace(W) .

Multidimensional Scaling. We utilize a version of MDS
known as classical MDS (Torgerson, 1965), which attempts
to find coordinates of points in an abstract multidimen-
sional space, such that the inter-point dissimilarities are well-
preserved when modeled as Euclidean distances in this space.
Consider a graph G with faces images as nodes, and an edge
exists between nodes i and j with length d̄(i, j), if the training
dataset contains the dissimilarity score for this pair. Since
MDS requires dissimilarities between every pair of images
to learn a representation, we estimate the missing distances
(edges) as the shortest path (sum of edge lengths) between two
nodes in G (Shang, Ruml, Zhang, & Fromherz, 2003). Once
all pairwise distances have been specified (or estimated), we
then run classical MDS to obtain coordinates for all the data
points. We also implemented alternative ways to estimate the
missing pairwise distances, as well as variants of MDS, but
as they achieved poorer similarity prediction performance on
held-out data, we will not discuss them further.

Discussion
In this paper, we presented a novel way of modeling the psy-
chological face space, by first initializing it with a computer
vision representation, then linearly transforming it to repro-
duce human dissimilarity ratings of faces as well as possible.
Methodologically, while our broad approach is related to trans-
fer learning (Razavian, Azizpour, Sullivan, & Carlsson, 2014;
Peterson, Abbott, & Griffiths, 2016), we also presented a
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novel regularization method, that allowed us to make a rather
surprising scientific finding: only the 8-12 most important
facial features of our model are sufficient to achieve nearly the
capacity of the full model to model human face processing,
suggesting that the psychological face space may be rather
low-dimensional.

By construction, our approach overcomes many of the criti-
cal limitations of a common approach in this field (Dailey et
al., 1999; Nestor et al., 2016; Nishimura et al., 2009; Shep-
ard, 1962; Torgerson, 1965), namely MDS, by being more
interpretable, invertible, generalizable, and data efficient. In
addition, we showed that while this method is far better at mod-
eling both dissimilarity judgments and human performance
on other face-based tasks (categorizing gender and race, as-
sessing social traits, rating emotional expressions), compared
to MDS. However, using only the similarity-relevant features
does not work as well as also including the orthogonal features,
especially for affective judgments. This scientific finding is at
odds with an implicit assumption about human face represen-
tation in the psychology literature (Valentine, 1991), which,
by attempting to reconstructing the full psychological face
space using only pairwise similarity judgments, assumes that
features important for these judgments are also sufficient for
all other face-based tasks.

Another interesting finding is that AAM provides a better
initial representation than convolutional deep neural networks
trained on both object recognition and face recognition, both
for similarity judgments and for other human face-based tasks.
We find that VGG16 trained on face recognition (VGGFace2)
comes the closest, but is highly inefficient in terms of the
number of features it needs to capture similarity judgments
(despite having the same trace regularization applied to both).
An interesting line of future research would be to consider var-
ious unsupervised learning variants of deep neural nets, which
may not only learn psychologically relevant features, but also
incorporate a decoder model that can generate synthetic im-
ages to help visualize/interpret the latent feature space. In
particular, adopting techniques that explicitly incorporate in-
ductive biases about shape and texture into the architecture
seem promising (Shu et al., 2018; Nguyen-Phuoc, Li, Theis,
Richardt, & Yang, 2019).
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