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Abstract 

Human cognition is routinely challenged by today’s 
multitasking demands which require continuous attentional 
deployment to multiple task components in parallel. While 
practice-based multitasking training has been shown to 
improve multitasking performance, little is known about how 
attention should be best deployed for optimal training. To this 
end, we leveraged a large-scale dataset from an online 
cognitive-training platform to investigate individual 
differences in task learning across long-term training. We 
developed an index of attentional deployment that specifies the 
temporal dynamics of learning for each component of the 
multitask and calculate distance maps between clusters of users 
to specify distinct learning styles. While long-term practice 
improved the multitasking performance of all participant 
groups, participants who focused on learning one task 
component earlier and more emphatically, benefited from 
superior learning gains throughout the entirety of training. 

Keywords: multitasking; attentional bias; cognitive control; 
learning; adaptive training; practice effects; big data 

Introduction 

Human cognition is marked by the ability to task switch 

which allows a person to rapidly adapt to different situations. 

Humans regularly challenge these control processes when 

attempting to simultaneously integrate multiple sources of 

information. In tasks such as driving, human cognition adapts 

to input discrete information cues such as traffic signals and 

GPS systems along with continuous environment scanning 

for cars to avoid collisions or to stay within the lanes. Many 

jobs in the modern era include integration of information 

sources from discrete warning systems while simultaneously 

demanding continuous monitoring of other sources. 

Various theoretical models of multitasking attempt to 

describe improvements in multitasking ability following 

training (Kiessel, et al, 2010). These theories range from 

changes in specific task representation to improvements in a 

more generalized cognitive flexibility ability (Altman & 

Gray, 2008, Dux, et al, 2009, Salvucci & Taatgen, 2008, 

Steyvers, 2019). According to these theories, processes that 

improve A) task-switching, B) individual task performance, 

C) a learned fused representation of both tasks, and D) 

learning a more generalized multitask representation, are all 

candidates for contributing to performance gains after 

training. While discussion of these sources seems purely 

theoretical, they have specific implications for training 

program structures. For instance, if gains are primarily 

derived from cognitive flexibility and plasticity, this would 

suggest that generalized representations of multitasks are the 

source of gains and would lead to more recommendations to 

immerse trainees in varied types of multitasking. While this 

may be the case, there is still much to be understood about 

the most effective learning of an individual multitask, which 

would form the elements in a much more comprehensive 

multitask training program. 

For purposes of understanding the processes behind 

multitasking and generating usable training 

recommendations, we will focus on theoretical sources 

contributing to the performance gains within a single 

multitask following practice-based training. This still leaves 

many theoretical sources available as explanations for the 

observed gains in cognitive performance. For instance, if 

performance gains are primarily derived from strengthening 

single-task representations contributing to multitask 

performance, these theoretical sources would suggest that 

learning individual task components, still embedded in the 

multitask context, should be focused on individually. 

However, other models of cognitive flexibility would stress 

integrated cognitive representation of both tasks, which 

would suggest the opposite training recommendation. In this 

case, trainees might be best served by immediate immersion 

into the multitask context with feedback and direction to 

emphasize equal attention to learn most effectively the 

integrated multitask.  

To investigate these cognitive accounts of multitasking, 

and their relevant training recommendations, we can leverage 

large-scale cognitive training data available from Lumosity’s 

Human Cognition Project, an online training platform. While 

task instruction and feedback within these training games 

reinforce a balanced task emphasis across this dual-task 

paradigm, there likely exists significant individual variation. 

Of interest to researchers, the variation of task emphasis may 

in fact contribute to individual differences in learning 

effectiveness and speed. More evenly split task attention 

would strongly support computational models of fused tasks, 

while attentional bias to one task supports the notion of 

single-task representation models as well as single-task 

learning within the context of a multitask perceptive 

environment before task integration. 

Separating the dynamics of attentional bias towards the 

task components provides a method to quantify the session-

to-session variation that occurs during learning and a way to 
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calculate to what extent each type of multitask learning 

occurs. Doing this across a large number of participants (e.g. 

tens of thousands) makes it possible to compare clusters of 

learning styles while, importantly, significantly improving 

the signal to noise ratio (approximately, by an order of 

hundred in this paper) that is normally debilitating in typical 

participant sized pools when examining second-order 

behavioral measures within participants. 

Large-scale behavioral data affords us the opportunity to 

calculate second-order behavioral metrics of reaction time. 

Often, the distribution is bounded to the left and has a long 

right tail, popularly modelled by an ex-Gaussian distribution 

(Whelan, 2008). Although the model parameters and its exact 

mental correlates are debatable (Matzke and Wagenmakers, 

2009), there is ample suggestion that at minimum, right-tailed 

skews indicate lapses in cognitive control or attention to the 

task, while median shifts indicate intrinsic speed of the 

processes related to the task (Dawson, 1988). We push this 

concept further by separating out individual task components 

within the adaptive multitask in order to get sensitive time 

dynamics of attentional emphasis for both task components 

across 100 learning sessions. 

Separating the task components of a dual-task across 

longitudinal training data specifically allows us to make 

comparisons of ultimate cognitive performance gains, 

learning speeds, and the degree to which learning patterns 

(namely, attentional emphasis on each task component 

throughout learning) affects performance gains and learning 

speeds. 

Materials and Methods 

Paradigm and Participants 

 

Adaptive Multitasking Paradigm We performed a 

retrospective analysis of gameplay data for a sample of 

participants who played the Web version of “Highway 

Hazards” on the Lumosity platform that is designed to test 

the ability to split attention between avoiding different kind 

of obstacles on the road (1) continuous non-cued events, and 

(2) discrete cued events. Trials from non-cued events (Task 

1, for purposes of this paper) originate on the horizon (Figure 

1) and successful avoidance is dependent on the current speed 

of the car. Trials for the secondary task are cued with 

statically presented signs and roll onto the road from the side 

beyond the visual field of view with no other warning. Time 

between the cue and these events (Task 2) are based on the 

current participant level.  

Sessions have a fixed duration of 180 seconds and 

involve both kinds of trials. Failure to avoid either kind of 

these obstacles result in collisions and decrease the speed of 

the car. Progressively avoiding obstacles successfully results 

in a gradual increase in car speed. The goal of the player is to 

keep the road speed as high as possible (capped at a 

maximum speed based on the current level of the participant). 

At the end of each gameplay session, participants are 

provided feedback and the participant’s level is changed for 

the next session depending on performance. 

 

Sample Size Participants who played at least one hundred 

sessions of Highway Hazards were included in this 

retrospective study. Participants with greater than 1% 

missing data, contiguous missing data, played more than four 

years ago, starting at levels other than the default starting 

level, that contained sessions that dropped below the starting 

level were excluded were dropped. Linear interpolation of 

missing data resulted in interpolation of 0.79% of the session 

data. This resulted in 42,932 participants who showed 

learning progress over 100 sessions on this version of the 

game. 

Data Processing 

 

Trial Analysis Reaction time to events were calculated by 

subtracting the onset of the cue from the time of the first 

action that successfully caused avoidance of the obstacle. For 

the primary task (where there is no warning), reaction time 

was calculated as the difference between the onset of the 

obstacle on the horizon from the time of the action that 

resulted in a successful collision avoidance. Due to the 

adaptive nature of this paradigm, difficulty level changes 

were used as the performance measure and only correct trials 

were included for reaction time analysis.  

 

Session Analysis Difficulty level progression was calculated 

by performing a within-participant normalization so that the 

maximum level achieved in 100 sessions for every participant 

was 1 and the starting level for all participants was 0. While 

this has no effect on the analytical method (because it relies 

on time-series correlations between participant progression 

which are unaffected by normalization), normalization 

allows the data view to be undominated by final level 

achieved thus compensating for differences in participant’s 

ability across training in the data views (Figure 2, 3). 

An attentional allocation metric was aggregated by 

calculating the skew of the reaction time distribution within 

each task type (Task 1 = continuous non-cued, Task 2 = 

discrete cued events) within each session. The tail of reaction 

time is a known correlate of attentional allocation to the task 

with right-tailed or positive skews indicating distraction or 

lapses in attention and negative tails indicating possible 

hypervigilance or impulsivity. Since sessions are comprised 

of many trials, distributions of reaction time were aggregated 

for each session of play for each user. The tail of the reaction 

time distribution for each session was estimated using a skew 

formula: (mean – median)/standard deviation of all reaction 

times within each session. 

An index of Attentional Bias was calculated by (1-

Task 1 attentional allocation)/(1-Task 2 attentional 

allocation) to indicate the relative bias of attentional 

emphasis between the two tasks during this multitasking 

paradigm across each session of training. Reaction time 

skews for each task were normalized within-participant prior 

1117



to this computation to remove intrinsic task component 

imbalances within the game and intrinsic biases within 

participants. Following this procedure, we can visualize 

session-to-session changes within a participant. This metric 

is designed to reflect the relative emphasis of attention 

between the two tasks, by representing the extent of 

attentional bias away from the primary task with respect to 

the secondary task. Larger numbers indicate less distraction 

within Task 1 reaction times (resulting in smaller positive 

tails) in comparison to the extent of distraction within Task 

2, and thus, reflects an increased attention bias towards Task 

1. 

 

Participant Analysis Difficulty level means and 

distributions across all participants were calculated and 

presented (Figure 2) reflecting mean ability progression 

across 100 sessions of training. 

Attentional bias means and distributions across all 

participants were calculated and presented (Figure 4) 

reflecting mean task emphasis across 100 sessions of training. 

Peak attentional biases and session number across the 100 

sessions of training were calculated to reflect the session 

which the average participant has a maximum bias towards 

the secondary task and away from the primary task (Figure 

4). 

 

Cluster Analysis Time-series clustering of learning 

behaviors was achieved using multidimensional scaling 

(MDS) on a distance matrix generated by using temporal 

representational dissimilarity matrices (RDMs) 

(Kriegeskorte, Mur, & Bandettini, 2008) on the first sixteen 

sessions of the Attentional Bias metric across all participants. 

A temporal region of interest (ROI) was a priori determined 

by calculating the 50% gain in the overall difficulty level 

gains (determined to be 16.35 sessions). Representational 

dissimilarities across the first sixteen sessions between all 

users were computed and then Fischer transformed. 

Temporal RDMs resulted in a 42,932 x 42,932 distance 

matrix between all participants. Hierarchical agglomerative 

clustering was used on this distance matrix, and an arbitrary 

distance cutoff of 0.5 of the maximum distance was used 

which separated the participants into fifteen learning 

trajectories (Figure 5).  

 Training gains, calculated as the area under the 

curve (AUC) of the difficulty level curve, was computed for 

each learning cluster (Figure 6) and 1-way ANOVAs were 

computed at sessions 20, 50, and 100. Additionally, the mean 

Attentional Biases across sessions were computed and 

ANOVA results along this clustering variable are presented. 

Bootstrapped distributions (without replacement) for all 

ANOVAs computed in this study, obtained by random 

assignment of participants in clusters of identical size to the 

analysis and were resampled 1,000 times. These bootstrapped 

distributions were used to compute a significance (p < 0.01) 

for all analyses.  

 

Temporal Dynamic Modelling Time of peak attentional 

bias as a predictive measure for training gains was confirmed 

by a linear regression model. The session number of the peak 

attentional bias was used to predict the AUC of difficulty 

across all sessions. This target measure reflects users who 

achieved their maximum potential earlier and maintained it 

for longer. For comprehensiveness, the correlation between 

the AUC of the attentional bias metric and AUC of difficulty 

level are also reported for significance comparison. 

 

SNR Analysis Signal-to-noise ratio across all participants 

was estimated by computing the absolute mean error from a 

linear model of Attentional Bias, using the last 80 sessions 

for all users (well after the peak for all clusters) resulting in 

an SNR of 39.3. Using the SNR formula SNR = E[S2]/E[N2], 

SNR for an individual participant can be thus estimated at 

0.19, reflecting a stronger noise than signal at a single 

participant level. For a SNR of at least 5, approximately 700 

participants are needed. For our study, the smallest cluster 

had 1,881 participants. 

 

Results 

 

Difficulty Level Mean difficulty levels and changes in 

difficulty levels across all participants for all sessions were 

computed revealing a characteristic logistic pattern of ability 

gain (Figure 2, 3). 

 

Attentional Bias An attentional bias index across all 

participants for all sessions was computed revealing an early 

positive peak followed by a return to mean, potentially 

characteristic of an early learning phase (Figure 4). 

 

Clustering analysis Clustering of 43,932 participants by 

temporal patterns in the attentional bias index in the first 16 

sessions of training using a distance cutoff of 0.5 resulted in 

fifteen clusters (Figure 5) Cluster sizes ranged from 1,881, to 

5,394 participants. Mean positive peaks within the attentional 

bias time course for each cluster were found at sessions 0 to 

session 14 (Figure 5). Mean time of attentional bias peaks for 

each cluster were input into an ANOVA model confirming 

the clustering procedure (F=421.3, p < 0.001). 

These clusters were then used to evaluate difficulty level 

progression at session 20, at a time point well after the 

clustering procedure but still within early training, which 

revealed mean difficulty level differences (F=10.01, p < 10-

23; Figure 6) where mean difficulty values reflect the 

proportion of the maximum level eventually achieved by the 

participant. ANOVAs for gains at session 50 (F=5.16, p < 

10-10 ) and session 100 (F=2.6, p < 10-3) were also computed, 

reflecting diminishing differences in the learning groups as 

they get further away from the early learning phase, likely 

due to other sources of learning variance over the course of 

training. 
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Temporal Modelling Target variables of interest (time of 

peak attentional bias) across all participants was used to 

predict training effectiveness (total area under the difficulty 

level curve) across all 100 sessions (slope = -0.000898, 

intercept = 0.62, r = -0.23). For comparison, AUC for both 

metrics were linearly regressed across all sessions for each 

participant (slope = -0.0856, intercept = 0.668, r = -0.0746). 

Mean time for peak attentional biases for each of the 

fifteen learning clusters was extracted and used to predict 

training effectiveness by session 20 (slope = -0.00185, 

intercept = 0.465, r = -0.82, p < .0005), session 50 (slope = 

-0.0014, intercept = 0.646, r = -0.881, p < 10-4), and session 

100 (slope = -0.001, intercept = 0.79, r = -0.73, p < 0.005) 

(Figure 6).  

General Discussion 

We present behavioral evidence of individualized 

multitask adaptation within practice-based learning against 

an adaptive multitask paradigm. This study offers a group-

level insight into the temporal dynamics of attention across 

training; these dynamics ultimately contribute to increases in 

multitasking ability. In addition to the aggregate training time 

contributing to multitask ability improvement, a pattern of 

attentional bias to an isolated task component early in training 

results in superior training speed and gains. This temporal 

pattern may reflect focused but effective learning of one task 

component, temporarily treating the other task components 

as noise, to effectively learn the rules of one task component 

well. Note that rather than true single-task practice, this 

single-task emphasis still takes place in multitask context 

where other active task components are ongoing. This 

distinction is important because adaptation to the individual 

task components also potentially involve effectively filtering 

out visual and motoric aspects of the other components that 

are present in a multitask. 

Specifically, we visualized dynamics within our learning 

clusters of contiguous sessions of focus on a task component, 

marked by an above baseline attentional focus, anywhere 

from one to six sessions, early in training, which seems to 

constitute a necessary learning phase to adapt to the 

multitask. However, those participants with less biased 

attentional deployment towards one task component, or who 

deployed biased attentional deployment later in training, 

ended up with the least gains and the slowest training speed. 

Counter to intuition derived from many multitasking models 

which might stress multitask integration and a more balanced 

attentional load to all components of the task, users that 

frontloaded the most attentional bias towards one task 

component within the earliest session or sessions, benefitted 

from more superior training gains and multitask performance 

throughout training.  

It is important to note that rather than reflecting a learning 

style to focus on the individual components, this pattern may 

reflect cohorts that are able to learn faster, reflecting those 

that could achieve higher peaks of attentional bias and spend 

less sessions on that learning phase. As this data shows, those 

faster learners could thusly achieve their maximum potential 

ability earlier. In either case, we demonstrate this as a useful 

metric of an early learning phase of multi-session multi-task 

adaptation. 

Our second-order attentional metric and time-series 

clustering procedure generates simple canonical functions of 

attentional dynamics across the earliest sessions of training 

that represent different learning styles which ultimately 

contribute to differences in individual user adaptation to an 

adaptive multitask. This approach had the advantage of not 

requiring a priori models, while also being a clustering 

approach that provides descriptive predictive features (in the 

form of the canonical functions). 

By generating temporal canonical functions which emerge 

from large datasets, this paper provides a possible direction 

in the future by which individual or group variation within 

mass-collected behavioral datasets can be used to study 

cognitive adaptation over time. Future beneficial directions 

include improving reaction time with more sophisticated ex-

gaussian models or other distributions, using smoothing 

filters to improve RDM measures, increasing the dimensions 

of the MDS map, using hyperparameter searches to find 

optimal temporal ROIs and optimal number of clusters. 

Different clustering thresholds ranging from five clusters to 

thirty clusters resulted in similar findings but were not 

reported due to the limitations of this format. Future studies 

may wish to include using the described methods in this paper 

for analyzing temporal dynamics of action efficiency, 

reactivity versus planning biases, recovery from errors, and 

other reaction time based components of multitasking, in the 

context of practice-based adaptation.  

Finally, future multitasking training programs may be 

made potentially more effective by providing direction to 

trainees to isolate and focus attentional emphasis upon a 

single task component, in the context of a multitask 

environment, early in training, before proceeding to improve 

general multitask integration.  

Figures 

 

 
 

Figure 1: Web-based version of Highway Hazards. Left: 

Representative obstacles from Task 1 where the goal is 

primarily to avoid collisions with cars which appear on the 

horizon and get closer (red circles digitally added for clarity 

and are not present in the paradigm). Middle: Cue event for 

Task 2 which precedes an obstacle. Right: Obstacle for Task 

2 that appears from the side of the road. 
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Figure 2: Difficulty levels across all sessions and 

participants. Left: Mean within-participant-normalized 

difficulty level for all users across 100 sessions of training 

(mean is black; blue, red, yellow lines reflect the 68%, 95%, 

and 99% confidence intervals). Right: Distribution of 

within-participant-normalized difficulty level for all 

sessions. 

 

 
 

Figure 3: Difficulty changes (normalized within 

participants) across all sessions and participants Left: Mean 

training changes (in black) for all users across 100 sessions 

of training (blue, red, yellow lines reflect the 68%, 95%, and 

99% confidence intervals). Right: Distribution of difficulty 

changes across all training sessions. 

 
 

Figure 4: Attentional bias across all sessions and 

participants. Greater numbers reflect increased attention 

towards the primary task, relative to the secondary task. 

Left: Mean Attentional Bias (in black) for all users across 

100 sessions of training (blue, red, yellow lines reflect the 

68%, 95%, and 99% confidence intervals). Right top: For 

clarity, mean is plotted without confidence intervals, to 

reflect the positive peaks of attentional deployment that 

occur at session 5 and session 10. This is followed by a 

steady reduction in attentional deployment towards Task 1 

over 100 sessions of training. Right bottom: Distribution of 

Attentional Bias across all training sessions. 

 

 
 

Figure 5: Time-series RDM-based clustering of 

attentional bias in early training sessions. Top: Clustering of 

43,932 participants by temporal patterns in attentional bias 

behavior in the first 16 sessions of training. Middle left: 

Mean attentional bias index across these clusters for the first 

16 sessions. Note the positive peaks in attentional 

deployment occurring in each cluster (clarified in Figure 6). 

Middle right: Mean attentional bias time course across these 

clusters for all 100 sessions. Bottom left: Mean difficulty 

level progression within the first 16 sessions for these 

clusters. Bottom right: Mean difficulty level progression 

across all 100 sessions for these clusters. 

 

 
 

Figure 6: Attentional bias and total progression (measured 

as area under the curve) of the fifteen different participant 

clusters. Earlier peaks in attentional bias strongly correlated 

with increased training gains across the entirety of training 

(p < 0.005). Training gains at Session 20, 50, and 100 (left, 

middle, right) are presented.  
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