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Abstract

One challenge within cognitive psychology on human
reasoning is modeling a wide range of tasks within a cer-
tain theory. Recently, a meta-study on human syllogistic
reasoning has shown that none of the established theo-
ries seemed to adequately match the human data. Possi-
ble reasons for this sobering result could be that (i) these
theories do not account for differences among reasoners
and (ii) they presuppose the same assumptions through-
out all 64 syllogistic reasoning tasks. In this paper, we
will address both aspects by proposing clustering by prin-
ciple patterns for syllogistic reasoning based on cognitive
principles, which have their roots in the literature of cog-
nitive science and philosophy of language. These prin-
ciples determine how the tasks are formally represented
within the weak completion semantics, a logic program-
ming approach that has already been successfully ap-
plied for modeling various human reasoning episodes.
We will develop a generic cognitive characterization of
(i) the reasoners and (ii) the tasks by integrating the re-
sults of a machine learning algorithm with underlying
cognitive principles. These principles provide a cog-
nitively plausible characterization of the response pat-
terns that cover the population of reasoners. Clustering
by principle patterns achieves the highest prediction accu-
racy compared to the available benchmark models, and
gives insights to the differences among (i) the reasoners
and among (ii) the explaining principles throughout the
tasks.
Keywords: Cognitive Modeling, Syllogistic Reasoning
Task, Individual Reasoning Patterns

Introduction
A wide range of cognitive theories have been proposed
in the past (cf. Wetherick and Gilhooly (1995); Chater
and Oaksford (1999); Woodworth and Sells (1935);
Johnson-Laird (1983); Rips (1994); Chapman and Chap-
man (1959); Polk and Newell (1995)), aiming to ex-
plain the majority of participants’ response in reason-
ing tasks (cf. Wason (1968); Byrne (1989); Khemlani
and Johnson-Laird (2012)). Usually, their underlying
assumptions plausibly explain by a very particular re-
sponse pattern within a certain task, namely the re-
sponses of the majority of participants (cf. suppression
effect in (Byrne, 1989)). It seems that the adequacy of a
cognitive theory is confirmed, if these assumptions can

1The authors are mentioned in alphabetical order.

Natural Language Sentence Classical Logic Mood

all artists are bakers ∀X(a(X)→ b(X)) Aab
some artists are bakers ∃X(a(X)∧b(X)) Iab
no artists are bakers ∀X(a(X)→¬b(X)) Eab
some artists are not bakers ∃X(a(X)∧¬b(X)) Oab

Table 1: The four moods and their formalization.

Figure Premise 1 Premise 2

1 artists−bakers bakers− chemists
2 bakers−artists chemists−bakers
3 artists−bakers chemists−bakers
4 bakers−artists bakers− chemists

Table 2: The four classical figures.

explain the majority of participants’ responses for var-
ious reasoning tasks. However, psychological results
have shown that different significant response patterns
exist, i.e. there are individual differences among partic-
ipants, which the theories should account for (Johnson-
Laird & Khemlani, 2016; Ragni, Kola, & Johnson-Laird,
2017). Recently a few approaches have been developed
that (i) aim at explaining these differences (cf. Johnson-
Laird and Khemlani (2016); Breu, Ind, Mertesdorf, and
Ragni (2019); Dietz Saldanha and Schambach (2019)),
but they did not yet address (ii) the differences among
tasks.

In this paper we present a novel approach by apply-
ing a generic cognitive characterization of (i) the reason-
ers and of (ii) the tasks. We then investigate whether
differences exist by considering real human data, and
how these differences can be explained. For this pur-
pose we consider human syllogistic reasoning, as it has
been well studied in the past and provides enough vari-
ations within tasks.

Syllogisms originate from Aristotle (Barnes, 1984):
Each syllogism consists of a pair of syllogistic premises,
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according to the four classical moods and figures shown
in Table 1 and 2, together with one conclusion about a
and c expressed in one of the four moods in Table 1.
There are 42×4 = 64 different pairs of premises that can
be uniquely specified by the abbreviations of the moods
and figures in Table 1 and 2. Consider the following pair
of syllogistic premises, abbreviated by AI1 (Aab, Ibc):

All artists are bakers. Some bakers are chemists.

Given these two premises, which conclusion on the
relation between artists and chemists (necessarily) fol-
lows? A (syllogistic) conclusion can take one of the fol-
lowing forms:

Aac Eac Iac Oac Aca Eca Ica Oca

where the abbreviation Aac stands for All a are c, Eac
stands for No a are c, etc. According to classical logic,
no valid conclusion (NVC) follows, while according to the
data in (Khemlani & Johnson-Laird, 2012), 70% of the
participants concluded Some artists are chemists (Iac) and
16%, which was just above random choice, concluded
NVC. Here, we are not only interested in these individ-
ual differences but investigate whether the same partic-
ipants change their underlying assumptions when car-
rying out the task of solving these 64 pairs of (syllogis-
tic) premises.

The paper is structured as follows: We will first in-
troduce the relevant cognitive principles. After that, we
will present the novel computational approach of clus-
tering by principle patterns for syllogistic reasoning. In
particular, the generic cognitive characterization of (i)
reasoners and of (ii) tasks will be developed. Finally,
a two-folded evaluation is given: First, the predictive
accuracy of clustering by principle patterns will be com-
pared to the benchmark models with the help of the
CCOBRA framework. Second, a qualitative assessment
will give more insight on the relation between reason-
ers, tasks and principles.

Cognitive Principles
The underlying theory of clustering by principle patterns,
is the weak completion semantics (WCS) (Hölldobler
& Kencana Ramli, 2009), a logic programming ap-
proach (Lloyd, 1984). Tasks within WCS are repre-
sented formally as logic programs, and reasoning takes
place with respect to their supported models that are
computed by a semantic fixed point operator inter-
preted under the three-valued Łukasiewicz (1920) logic.
Whenever applicable, explanations are skeptically ab-
duced and programs minimally revised. WCS has al-
ready been applied for various reasoning tasks, such
as Byrne’s (1989) suppression task (Dietz, Hölldobler,
& Ragni, 2012), Wason’s (1968) selection task (Dietz,
Hölldobler, & Ragni, 2013), and human syllogistic rea-
soning (Dietz, 2017; Costa, Dietz Saldanha, Hölldobler,

& Ragni, 2017). Here, we will not introduce the under-
lying formalization within WCS, but rather give an in-
tuitive understanding of the principles.
Interpretation of conditionals and quantifiers As
widely accepted, humans understand natural lan-
guage statements, such as All bakers are artists defeasi-
bly (Stenning & van Lambalgen, 2005, 2008). Accord-
ingly, for any syllogistic premise, we keep the structure
of a conditional (conditionals) but include a license for
inference (licenses), by means of an abnormality predi-
cate, as follows:

All bakers, that are not abnormal, are artists.
By default, no baker is abnormal.

Additionally, humans do not quantify over things that
do not exist (Grice, 1975), which is called the existen-
tial import (import). Thus, if we know that all All bakers
are artists, we assume that Some bakers exist. In the se-
quel, for all universally quantified premises (A and E),
(conditionals), (licenses) and (import) apply.

According to Grice (1975), ideally, humans try to be
as informative and clear as possible. Thus, Some bakers
are artists implies that not all bakers are artists, because
otherwise it would have been stated. For instance, for
Some bakers are artists, we assume that For some bakers, it
is unknown whether they are artists (unknownGen). Even
though in classical logic Some bakers are artists is equiv-
alent to Some artists are bakers, not all humans make that
assumption, and therefore we explicitly introduce the
(converse) principle when assuming this equivalence.
All introduced principles so far belong to the basic prin-
ciples.
Additional Inferences and Generalizations Some
humans generalize over premises with the existentially
quantified moods, I (Some ... are ...) and O (Some ...
are not ...). They seem to understand them as their
corresponding (limited) universally quantified moods,
A and E, respectively with respect to entities that are
not directly introduced by the premise in considera-
tion (generalization). Even though it seems unlikely
that humans reason directly by contraposition while
solving a reasoning task, humans might come to the
contrapositive conclusion by searching for counter
examples (cf. (Rips, 1994; O’Brien, D. S. Braine, & Yang,
1994)) (contraposition). On the other hand, if partici-
pants cannot straightforwardly derive any conclusion,
instead of deriving NVC, they search for explanations
(searchAlt) (Lipton, 2003). Under WCS, (searchAlt) is
modeled by means of skeptical abduction.

An overview of the predictions of these principles for
all 64 pairs of syllogistic premises within WCS can be
found in (Dietz Saldanha & Mörbitz, 2020, Table 5).
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Task Part A Explaining Principles Part B Explaining Principles Part C Explaining Principles

AI1 Iac abd1, atmo1 Iac abd1, atmo1 Ica abd2, atmo2
AI3 Ica abd2, atmo2 NVC basic, contrap, general NVC basic, contrap, general
AE3 Eca contrap, atmo2 Eca contrap, atmo2 Eca contrap/atmo2
EI3 Oca contrap, atmo2 Oca contrap, atmo2 NVC basic, abd
IA2 Ica abd2, atmo2 NVC basic, contrap Ica abd2, atmo2
II1 Iac atmo1 NVC basic, contrap, abd NVC basic, contrap, abd

Atmosphere (6 out of 6) Contraposition (5 out of 6) various

Table 3: Three participants’ (A, B and C) responses for six tasks and the principles that explain these responses.

Heuristic strategies The following two principles de-
scribe heuristic strategies applicable to syllogistic rea-
soning. According to the atmosphere bias (Woodworth
& Sells, 1935), humans might be affected by the moods
of the premises, in the sense that universal (affirmative,
resp.) conclusions are excluded when one of the
premises is existential (negative, resp). In the case of
identical moods, the conclusion must have this mood
as well. Riesterer, Brand, Dames, and Ragni (2019)
observed that most cognitive theories do not predict
NVC. Therefore, they develop own NVC heuristics, for
which the one with the highest predictive accuracy is
specified as follows: If none of the premises contains
the affirmative universal quantifier for all, NVC is
predicted (nvc heuristic).

Three Participants and their Explaining Principles
As illustration for the introduced cognitive principles
applied to syllogistic reasoning consider Table 3: Col-
umn 1 shows the given task (pair of premises), and col-
umn 2 to 4 show the cognitive principles that corre-
spond to the responses given by participant A, B, and
C, respectively.2 basic, contrap, general and abd are ab-
breviations for the principles basic, contraposition, gen-
eralization and abduction, respectively. Note that basic
is assumed by contrap, general and abd as well.

In case a principle predicts two responses, 1 refers to
the corresponding ac response whereas 2 to the ca re-
sponse. The last row shows which of the principles ex-
plained most of the participants’ responses for the six
tasks: A’s and B’s responses are best explained by the
atmosphere and contraposition principles, respectively,
whereas for C’s responses no preferred principles seem
to apply.

Clustering by Principle Patterns
We are interested in finding the clusters which best
fit the response patterns of participants within a cer-
tain population. The idea originates from Clustering
by Principles proposed in (Dietz Saldanha & Scham-

2The data containing these responses is in Ragni2016.csv
in https://github.com/CognitiveComputationLab/ccobra

bach, 2019). This approach assumes that a population
of participants can be characterized by a set of clusters,
where each of them is characterized by a set of princi-
ples. However, here we intend to compute clusters that
should not only be characterized by a restricted set of
underlying principles, but rather, their characterization
depends on the given task.

For this purpose, we first applied the machine learn-
ing k-means++ clustering algorithm (MacQueen et al.,
1967; Arthur & Vassilvitskii, 2006) to the task, where
the distance metric was adapted to fit the participants’
data. A data point is a response pattern given by one
participant, i.e. it consists of all 64 responses, where
each belongs to one of the 64 tasks (pairs of syllogis-
tic premises). For instance, [Aac,NVC,Aca, . . . ,Aca] of
length 64 is a valid data point. The distance between two
datapoints is calculated using the hamming distance be-
tween their answers, which is computed by comparing
the number of different responses, and computing the
sum of the number of different answers. Consider two
data points of length 64, where one only consists of 64
NVC responses and the other one only consists of 64 Aac
responses: The computed distance is 64, as they have 64
different responses. The distance of a data point to itself
is 0, as all answers are the same.

Using this metric, the algorithm computes k different
data points, i.e. clusters, with a corresponding cluster
center. This cluster center does not necessarily need to
correspond to the response pattern but it has the small-
est distance to all of the data points in its cluster in com-
parison to all the other k-1 center points.

These cluster centers represent the k-clusters and are
then compared to the responses predicted by the cogni-
tive principles. Hence, for each cluster center, we spec-
ify a set of 64 pairs, where one pair consists of the task
(pair of syllogistic premises) and a cognitive principle
that predicted the same answer, i.e. the answer that ex-
plains the response of each task of the center.

As illustration consider the principles that explain
participant’s A responses in Table 4. Let us assume that
the responses given by participant A is a cluster center.
For OA1, IA4 and AI2, the participant’s responses match
(among others) the basic principle’s prediction, whereas
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Start

Pre-train phase∗

Prediction phase∗

End

Main program

Input: training data set
Ouput: k-cluster centers

Input: test data set,
k-cluster centers
Output: predictive accuracy

Start

compute k-clusters

End

Pre-train phase

Input: training data set
Ouput: k-cluster centers

Start

for each item Predict answer

for each
cluster

Adapt

End

Prediction phase

Input: item, k-cluster center
Ouput: prediction

Input: item,
correct answer

Figure 1: Flowchart of program (left), pre-train (middle) and prediction (right).

Task Part A Principles Explaining A’s Response

OA1 Oac basic, contrap, general, abd, atmo1
IA4 Ica basic2, contrap2, general2, abd2, atmo2
AI2 Iac basic1, contrap1, general1, abd1, atmo1

EA3 Oac none
AA1 Ica none
EI4 NVC nvc heuristic

EO3 NVC basic, contrap, general, abd, nvc heuristic
OO1 NVC basic, contrap, general, abd, nvc heuristic

AA4 Iac none

OA4 Oac atmo1
IO4 Oca atmo2
AE3 Eca atmo2

Table 4: Extract of response pattern for participant A.

for OA4, IO4, and AE3 it matches the predictions made
by the atmosphere bias. Yet, the participants’ answer
for EI4, EO3 and OO1 corresponds to the nvc heuristics.
A cluster center that corresponds to participants’ A pat-
tern could be a set containing these pairs:

{. . . ,(OA1,basic), (IA4,basic2), (AI2,basic2),
(EI4,nvc heuristic), (EO3,nvc heuristic),(OO1,nvc heuristic),
(OA4,atmo1), (IO4,atmo2), (AE3,atmo2), . . .}

Note that the same answer can be predicted by differ-
ent principles (e.g. EO3 and OO1 are also predicted by
contrap, general, abd and nvc heuristic), and thus different
pairs can lead to the same predictions.

Implementation in CCOBRA
The evaluation environment for the predictive accu-
racy, called the CCOBRA (Cognitive COmputation
for Behavioral Reasoning Analysis) Modeling

Framework, in which a given cognitive model
can adapt the optimal prediction strategy through
the pre-train phase, by dynamically changing its
predictions depending on the participants’ past re-
sponses. The modeling framework can be found here:
https://github.com/CognitiveComputationLab/ccobra.

Figure 1 (left) shows an overview of our implemen-
tation within the CCOBRA framework, that consists of
two main phases: The pre-train phase (middle) and
the prediction phase (right). In the pre-train phase,
the model is asked to predict the responses from the
training data set, and then to adapt its own strategy
according to their responses. For this phase, the k-
means++ clustering algorithm is applied to the train-
ing data set. The prediction using these k-cluster
centers is implemented as follows: First, for each k-
cluster center that predicts the participants’ response
correctly during the adapt phase, its corresponding pre-
dictive accuracy (score) is increased dynamically. Ini-
tially, when no information about the participants’ re-
sponse pattern is known, the predicted answer will be
the one corresponding to a k-cluster computed with
k-means, where k = 1. This k-cluster center has the
minimum distance to all data points, and therefore
its response corresponds to the most frequent answers
(MFA) given by the training data set. After each
prediction, the k-cluster center that matched the last
responses of the participants best, is chosen for the
next prediction. An elaborate description of the im-
plementation within CCOBRA is provided in (Dietz
Saldanha & Schambach, 2019). The implementation
of clustering by principle patterns is accessible online:
https://github.com/enterJazz/syllogistic-k-means.

Evaluation
The evaluation was done in two parts: First, the predic-
tive accuracy of the clustering method was compared
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Figure 2: Predictive accuracy of benchmarks and Clus-
tering by Principle Patterns (rightmost).

with the performance of the available benchmark mod-
els. As training data, Ragni2016.csv provided by CCO-
BRA was used, which contained the response patterns
of 139 participants for all 64 tasks. As test data for
the prediction phase, Veser2018.csv from CCOBRA was
used, which contained the response patterns of 32 par-
ticipants. We will also discuss the predictions under
clustering by principle patterns in combination with the
nvc heuristics from (Riesterer et al., 2019).

After that, a qualitative analysis is carried out, by in-
vestigating whether a correspondence between individ-
uals, tasks and principles could be observed.

Predictive Accuracy
Figure 2 shows the results of the evaluation of clus-
tering by principle patterns assuming 4 clusters, i.e.
where k=4, compared to the predictions of the bench-
mark model provided by CCOBRA. From left to right
the figure shows the results of the following mod-
els: uniform (11%, when the responses are chosen
randomly), matching bias (16%, matching) (Wetherick
& Gilhooly, 1995), probability heuristics model (20%,
PHM) (Chater & Oaksford, 1999), atmosphere bias
(22%, atmo) (Woodworth & Sells, 1935), mental model
theory (22%, MMT) (Johnson-Laird, 1983), NVC (25%,
when the chosen responses are always no valid con-
clusion), (logic-based) PSYCOP model (27%, PSY-
COP) (Rips, 1994), illicit conversion heuristics (28%,
Conversion) (Chapman & Chapman, 1959), verbals
models theory (29%, VerbalModels) (Polk & Newell,
1995), MFA (37%, when the most frequent answer
learned from the training data set is chosen) and clus-
tering by principles patterns (41%, k=4). Note that Fig-
ure 2 has been automatically generated by the CCOBRA
framework.

Clustering by principle patterns achieved a predictive
accuracy of just above 40%, which is the highest score,
compared to the performance of the other benchmark

models. Note that when applying cross validation on
the training set, the predictive accuracy is just above
50%, which is about the same result as other machine
learning approaches have achieved so far.3

NVC heuristics
According to Riesterer et al. (2019), most cognitive the-
ories do not account for NVC conclusions. There-
fore, we have tested all the NVC heuristics presented
in (Riesterer et al., 2019) in combination with clustering
by principle patterns but no overall improvement was ob-
served, the predictive accuracy was even worse.

From a qualitative point of view the following can
be observed: The predictions under WCS guided by
the cognitive principles covered 33 out of the 36 NVC
conclusions made by the best performing heuristic
in (Riesterer et al., 2019). This seems to indicate the
these predictions accounted well for NVC conclusions
in syllogistic reasoning.

Observations on Individuals, Tasks & Principles
Are there variations among (i) individuals and (ii) tasks
that can be characterized by clusters explained by cog-
nitive principles? Can we observe a certain tendency
of occurring principles within clusters, and if so, how
can these clusters be characterized? Let us first consider
Table 5, where for six tasks, columns 2 to 5 show the
predictions of the four learned clusters. The gray per-
centages in brackets (in the first row) show how many
of the participants in the training set corresponded to
that particular cluster: Almost half of the participants
(45%) have been assigned to cluster 1, whereas only 13%
have been assigned to cluster 4. As the predictions of
each cluster show, none of them can be characterized
by a particular principle, but rather, the corresponding
principles depend on the given task. The predictions
that correspond to the highest achieved percentage are
highlighted in gray. Column six shows which princi-
ples explain these predictions. For instance, for task II1,
general1 explains the response Iac.

The last column of Table 5 shows which of the bench-
mark models predicted the same responses (the ones
highlighted in gray). Interestingly, atmo, MMT, Ver-
balModels and Matching predicted all the highlighted
responses, without distinguishing among participants.
Our original claim that the applicable principles dif-
fer throughout all clusters, is confirmed. We conjec-
ture that the following principles are preferably applied
within particular tasks: (i) Contraposition seems prefer-
ably applied when both premises are universally quan-
tified (AE3 vs. EI3) and (ii) Abduction seems preferably
applied on syllogistic premise pairs of Figure 1 and 2
(AI1 and IA2 vs AI3). However, further investigations
are necessary to confirm these claims.

3https://www.cc.uni-freiburg.de/staff/files/2019-04-dresden
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Task 1 (45%) 2 (19%) 3 (23%) 4 (13%) Explaining Principle Theories with same prediction

AI1 Iac Iac Iac Iac abd1 (100%) PHM, MMT, VerbalModels, Conversion, Matching, atmo

AI3 NVC Iac Ica Ica abd2 (36%) PHM, MMT, VerbalModels, Conversion, Matching, atmo

AE3 Eac Eca Eca Eac contrap1 (58%) MMT, PSYCOP, VerbalModels, Conversion, Matching, atmo

EI3 NVC Oca Eac Oca contrap1,2 (32%) MMT, PSYCOP, VerbalModels, atmo

IA2 Ica Ica Ica Ica abd2 (100%) PHM, MMT, VerbalModels, Matching, atmo

II1 NVC Iac Iac Iac general1 (55%) PHM, MMT, VerbalModels, Matching, atmo

Table 5: Four Clusters and their predictions for six tasks. Column 6 shows the principle that explains the (gray)
highlighted response in the respective row and the last column shows the theories with the same predictions.

Similar to Johnson-Laird and Khemlani (2016)’s three
identified groups of reasoners, deliberative, interme-
diate, and intuitive, we can characterize the devel-
oped clusters here according to the frequency and types
of principles they apply: Over 80% of cluster 1 re-
sponses can be explained by abduction and contrapo-
sition, whereas for cluster 2 responses, over 80% can
be explained by the atmosphere bias. Accordingly, it
seems reasonable to classify the participants in cluster
1 as deliberative reasoners, whereas the participants in
cluster 2 might best fit the intuitive reasoners. The re-
sponses given in cluster 3 and 4 seem not to have a
strong tendency for any set of principles. This is con-
sistent with the observation made in (Dietz Saldanha &
Mörbitz, 2020): For some participants’ reasoning pat-
terns, a straightforward characterization by means of
the principles (identified so far) seems to be difficult.

Conclusions
We investigated which responses of the cognitive prin-
ciples within human syllogistic reasoning are applica-
ble given a certain task (pair of syllogistic premises).
With clustering by principle patterns we have developed
a generic cognitive characterization which shows that
cognitive theories do not only need to account for (i)
differences among reasoners, but also for (ii) differences
among tasks. The best fitting clusters were computed
by applying the k-means++ clustering algorithm on the
training data set and explained by the principles that
predicted the same responses. Each of these clusters
represent a response pattern for all 64 tasks and outper-
formed the benchmark models. More importantly, as
these clusters are characterized by underlying explain-
able and cognitively plausible principles, we can ob-
serve that principles are preferably applicable not only
with respect to a certain cluster, but with respect to a
given task. Finally, by considering the amount of princi-
ples which fitted the responses of each cluster, we were
able to characterize cluster 1 and 2. The predictions
given by the benchmark theories in the last column of
Table 5 do not account for neither (i) or (ii).

Summing up, clustering by principle patterns is novel
and contributes in various aspects: The approach in-

tegrates the clusters computed by a machine learning
algorithm with underlying cognitive principles, that
have their roots in the literature of cognitive science
and philosophy of language formalized within WCS.
These principles provide cognitively plausible charac-
terizations of the patterns that cover the population of
reasoners. We are not aware of other approaches that
addressed these differences.

For future directions, the conjectures need to be veri-
fied. Possibly new experiment might give explanations
when principles, such as abduction or contraposition,
are more likely to apply in certain circumstances than
in others. It would further help to consider a generic
cognitive characterization for other reasoning episodes
such as conditional or counterfactual reasoning. These
investigations might reveal new types of cognitive prin-
ciples.
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