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Abstract

Distributional semantic models (DSMs) are substantially var-
ied in the types of semantic similarity that they output. Despite
this high variance, the different types of similarity are often
conflated as a monolithic concept in models of behavioural
data. We apply the insight that word2vec’s representations
can be used for capturing both paradigmatic similarity (sub-
stitutability) and syntagmatic similarity (co-occurrence) to two
sets of experimental findings (semantic priming and the effect
of semantic neighbourhood density) that have previously been
modeled with monolithic conceptions of DSM-based seman-
tic similarity. Using paradigmatic and syntagmatic similarity
based on word2vec, we show that for some tasks and types
of items the two types of similarity play complementary ex-
planatory roles, whereas for others, only syntagmatic similar-
ity seems to matter. These findings remind us that it is im-
portant to develop more precise accounts of what we believe
our DSMs represent, and provide us with novel perspectives
on established behavioural patterns.
Keywords: semantic similarity; priming; word2vec; distribu-
tional semantics; semantic neighbourhood density.

Introduction
The cognitive processes and representations involved in word
meaning are a central area of interest for cognitive science. A
successful starting point for modeling these phenomena com-
putationally is the distributional hypothesis (Firth, 1957): the
idea that a word’s linguistic contexts are highly informative
of its meaning. Distributional semantic models (DSMs) oper-
ationalize this idea by representing the meaning of a word as
a vector induced from the set of contexts the word occurs in.
Such models have widespread use for modeling psycholin-
guistic phenomena regarding meaning.

One such phenomenon that has been studied extensively
using DSMs is semantic priming, in which the prior presen-
tation of a ‘prime’ word facilitates the processing of a related
‘target’ word (Meyer & Schvaneveldt, 1971). When stud-
ied at the level of individual prime–target pairs, the seman-
tic similarity between prime and target words has been found
to be an explanatory factor of the variance in reaction times
(Ettinger & Linzen, 2016; Mandera et al., 2017). However,
these item-level studies treat semantic similarity as a mono-
lithic relation, a position that is at odds with much previous
work (e.g. Lund et al., 1995; Jones et al., 2006; Günther et al.,
2016) that proposes distinctions between semantic similarity
in a narrow sense (featural overlap) and associative similar-
ity (between-word associations based on words’ conceptual
meaning or distributional co-occurrence). In these studies,

DSMs thought to instantiate one but not the other kind of sim-
ilarity have been found to explain different priming effects on
an aggregate level (as opposed to an item level).

The underlying conception of semantic versus associative
similarity, however, has been disputed (Ettinger & Linzen,
2016; McRae et al., 2012), as has one of the main ways in
which it is operationalized (Günther et al., 2016). In this pa-
per, we instead follow another distinction, based on distri-
butional properties (e.g. Schütze & Pedersen, 1993), namely,
that between syntagmatically related words (words that oc-
cur in each other’s near proximity, such as drink–coffee),
and paradigmatically related words (words that can be sub-
stituted for each other such as book–novel). We propose that
word2vec (Mikolov et al., 2013), a model that has been used
to produce monolithic ‘semantic similarity’ scores in item-
level semantic priming studies like Ettinger & Linzen (2016)
and Mandera et al. (2017), can isolate the syntagmatic and
paradigmatic similarity of word pairs by using its representa-
tions in ways most applications of this model do not do.

We will demonstrate that effects of semantic similarity pre-
sented as a holistic concept can be broken down into paradig-
matic and syntagmatic similarity, where the relative contribu-
tions of each depends on the nature of the task and stimuli.
We do so, first, by modeling the facilitatory effect of each
of these kinds of word similarity on semantic priming. After
validating the intuition of our construct, we show that the rel-
ative explanatory importance of the two kinds of similarities
differs across stimulus types, but that syntagmatic similarity
is an overall more reliable factor.

To show the potential of our approach in modeling process-
ing effects beyond semantic priming, we also look at another
semantic factor that has been shown to facilitate word recog-
nition, namely semantic neighbourhood density (the degree
of similarity of a word to its nearest neighbours in a DSM,
cf. Buchanan et al., 2001). By separately considering near-
est neighbours according to paradigmatic similarity vs. syn-
tagmatic similarity, we show that these two measures do not
equally contribute to the explanation of the reported effects.

These two case studies (1) remind us that it is important to
develop accounts of the kinds of constructs we believe our
DSM-based measures are representing, and (2) provide us
with novel ways of looking at experimental results, thus mo-
tivating further inquiry into the semantic representations and
processes involved in lexical processing.
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Our Approach
Distributional Semantic Model. The CBOW algorithm of
word2vec (Mikolov et al., 2013) is unusual in providing a
straightforward way to obtain word vectors that encode both
paradigmatic and syntagmatic similarity. This is due to its
optimization process that yields two distinct sets of vectors,
within the same semantic space. We can then consider simi-
larity of word representations both within one set of vectors,
or across the two sets of vectors, as we explain here.1

At a high level, word2vec optimizes a one-hidden layer
neural network to predict a target word (on the output layer)
on the basis of the words in its context (on the input layer).
This yields two sets of word vectors (of the same dimension):
those encoded in the columns of the input matrix (between
the input layer and the hidden layer), and those encoded in the
rows of the output matrix (between the hidden layer and the
output layer). In what follows, we refer to the input vector for
a word w as vI

w and the output vector as vO
w . The optimization

procedure is designed to bring the representation of context
words in the input matrix close (in the same vector space) to
the representation of their target words in the output matrix.
That is, the cosine similarity for vI

wc and vO
wt will be high if wc

is a frequent context word of wt .
Although most uses of word2vec only use input vectors for

performing tasks such as analogical reasoning (Mikolov et al.,
2013), using both sets of vectors can have advantages (Levy
et al., 2015; Roller & Erk, 2016; Beekhuizen et al., 2019). In
this work, we build on the insight of Levy et al. (2015) that
using both sets of word2vec vectors can yield two measures
of similarity, which separately reflect syntagmatic similarity
and paradigmatic similarity. Following Grefenstette (1994),
we refer to the two measures of similarity as first-order simi-
larity and second-order similarity, respectively.2

First-order similarity (FOS). A measure of syntagmatic
similarity should be high for words that frequently co-occur
with each other, such as phrasal associates (drink – coffee,
book – cover). Such pairs will frequently occur as (context,
target) pairs in the training corpus of word2vec and will there-
fore be predictive of each other. Because of this we expect
that word2vec’s training procedure will maximize their sim-
ilarity across the two matrices. Suggestive evidence for this
intuition comes from Levy et al. (2015) who provide a proof
that the inner-product of vectors across the two matrices in
the SkipGram variant of word2vec approximates measures of
word co-occurrence. Given this reasoning, we calculate the

1For our experiments, we train the CBOW algorithm of
word2vec on the SUBTLEXUS corpus (Brysbaert & New, 2009).
We used the implementation of the algorithm in gensim (Řehůřek
& Sojka, 2010) with 15 negative samples, a window size of 10, and
default settings for all other hyperparameters.

2Strictly speaking, Grefenstette (1994) denotes the strength of
word relations as affinities rather than similarities. Others denote
the relations as co-occurrences (Jurafsky & Martin, 2014) or associ-
ations (Jones et al., 2006). For reasons of simplicity, alignment with
most common usage in distributional semantics, and because both
measures are derived from the cosine similarity, we use the term
similarity.

word metric nearest neighbours

school FOS med, high, grad, graduate, elementary,
at, boarding, graduated, reform, dropout

SOS harvard, yale, gym, nyu, class, stanford,
academy, lawndale, university, princeton

book FOS comic, read, wrote, write, writing, writ-
ten, reading, published, poems, novel

SOS diary, novel, script, journal, poem, bible,
newspaper, manuscript, column, poems

theory FOS quantum, based, basic, physics, psycho-
logical, relativity, overriding, chemistry,
scientific, sexual

SOS strategy, method, concept, phenomenon,
character, personality, perception, tech-
nique, flaw, knowledge

excited FOS very, about, so, getting, too, pretty, terri-
bly, extremely, ’m, awfully

SOS upset, uptight, nervous, depressed, anx-
ious, worried, touchy, thrilled, annoyed,
embarassed

Table 1: Ten nearest neighbours for four target words, based
on First-order (FOS) and Second-order similarity (SOS).

first-order similarity (FOS) between two words (w1,w2) as
follows :

FOS(w1,w2) = cos(vI
w1
,vO

w2
) =

vI
w1
· vO

w2

‖vI
w1
‖‖vO

w2
‖
.

Second-order similarity (SOS). A measure of paradigmatic
similarity should be high for two words that are structurally
substitutable (cf. Lyons, 1977, 241), such as near-synonyms
(book – novel), antonyms (high – low), co-hyponyms (adjec-
tive – adverb), or hyponym–hypernym pairs (Africa – con-
tinent). Each of the two should occur in similar contexts,
without necessarily appearing in the vicinity of one another
(Schütze & Pedersen, 1993; Grefenstette, 1994). Consider-
ing word2vec, this means that these words will be the targets
of (many of) the same context words, and will be the con-
texts of (many of) the same target words. We can then expect
the word2vec training algorithm to learn similar representa-
tions of these two words within each of the input and output
matrices. Focusing on the input matrices here (but noting that
analogous results are obtained when looking at the output ma-
trices instead), we define the second-order similarity (SOS)
between two words (w1,w2) as follows:

SOS(w1,w2) = cos(vI
w1
,vI

w2
) =

vI
w1
· vI

w2

‖vI
w1
‖‖vI

w2
‖
.

First exploration. Table 1 illustrates our intuition that FOS
captures syntagmatic and SOS captures paradigmatic rela-
tions between words. Neighbours with high FOS are frequent
collocates of the target word (e.g., elementary and dropout for
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school) whereas neighbours with high SOS are substitutable
words (e.g., Harvard or academy for school).

Previous works have recognized the separation of these
two categories of relations (Günther et al., 2016; Jones et al.,
2006), and have used HAL and LSA to model paradigmatic
and syntagmatic relations, respectively. However, Günther
et al. (2016) report a correlation of r ∼ .90 between the two
measures which raises the question of whether these mod-
els are truly capturing independent relations. Conversely, our
computational measures of the two relations have a correla-
tion of r = 0.36 (p < 0.005) providing initial validation that
our measures are capturing distinct constructs.

Similarity Effects in Semantic Priming
The degree of semantic similarity between a prime–target pair
in a DSM has been shown to factor into item-level regression
models of semantic priming (Günther et al., 2016; Mandera
et al., 2017; Ettinger & Linzen, 2016). However, such works
rarely elucidate the notion of similarity they claim to tap into.
Here, we study how our two types of semantic similarity con-
tribute to the explanation of semantic priming effects. We hy-
pothesize that our measures will capture different yet comple-
mentary types of semantic similarity, because FOS will cap-
ture similarity in cases of priming of frequently co-occurring
words (cf. Hutchison et al., 2013), and SOS will do so for
cases of priming of semantically related words that do not co-
occur (cf. McRae & Boisvert, 1998). We test our hypothesis
on the Semantic Priming Project dataset (SPP, Hutchison et
al., 2013), a collection of 6,644 prime–target pairs, with their
reaction time (RT) in a primed lexical decision task (LDT).

Sensitivity of our Measures
Before looking into the online measures of priming, we use
the SPP to validate that our two similarity scores capture the
intended concepts. Prime–target pairs in the SPP are divided
into 12 categories of relations, which we group into the two
overarching categories of paradigmatic and syntagmatic rela-
tions. The paradigmatic relations that we use are: synonymy,
antonymy, superordination (i.e. hypernymy), and category
coordination (i.e. co-hyponymy). The syntagmatic relations
are forward-phrasal association and backward-phrasal associ-
ation. The remaining 6 categories (perceptual property, func-
tional property, instrument, script, unassociated, action) are
not easily classified, so we exclude them from this analysis.

If SOS captures paradigmatic relations and FOS syntag-
matic ones, we expect paradigmatic prime–target pairs to be
more similar in SOS than in FOS, and syntagmatic ones more
similar in FOS than in SOS. To test this, we look at the rel-
ative similarity between a prime and its target by ranking all
1,661 target words (in the Semantic Priming Project) by sim-
ilarity to the prime word and comparing the rank of the ac-
tual target given FOS to the rank of the actual target given
SOS. We expect pairs in paradigmatic categories (n = 1397)
to display lower ranks (higher similarities) for the target in
SOS-based rankings than FOS-based ones, and vice versa for
pairs in syntagmatic categories (n = 562). For each of the six
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Figure 1: Average rank of targets for primes (lower is better)
in each category [with number of items], using FOS vs. SOS.
Blue bars represent rankings by FOS and orange bars rep-
resent SOS. One-sided paired t-tests show significant differ-
ences in the predicted direction between FOS and SOS ranks
for all categories (for hypernymy: p < .01, for all others:
p < .001).

aforementioned categories, we plot the average ranking for
every target given its prime with both FOS and SOS.

Fig. 1 confirms this intuition: for each of the relations, the
difference between rankings based on FOS and those based
on SOS is significant in the predicted direction. This pattern
validates our intuition about the FOS and SOS measures.

Modeling Semantic Priming Project Data
Next, we test our hypothesis by fitting linear regression mod-
els to primed RT for all of the (prime, target) pairs in the
SPP data, using our two measures of semantic similarity as
the predictive variables of interest. We expect that more re-
lated (prime, target) pairs should be judged as more similar,
by FOS and SOS, than less (or un-) related pairs, and predict
a lower primed RT – i.e., the priming effect. As in Man-
dera et al. (2017); Günther et al. (2016), but in contrast to
Hutchison et al. (2008), we carry out linear regressions on
the primed RT, rather than the difference between the primed
and unprimed RT, to ensure that our measures are sufficiently
sensitive to capture the priming effect (or lack thereof, for
unrelated pairs) on an itemwise basis.

In our regressions here, we address several shortcomings
of previous work using DSM similarity measures on the SPP
(Günther et al., 2016; Ettinger & Linzen, 2016), including
those using word2vec (Mandera et al., 2017). First, we use
both FOS and SOS measures derived from our DSM, which
enables a finer-grained exploration of the role of different
types of similarity. Second, we include non-primed lexical
decision RT of the target as a covariate because it captures
influences on primed RT that do not pertain to the relation
between the prime and the target. Whereas others have sub-
tracted the unprimed RT from the primed RT and used the
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Figure 2: Performance of three linear regression models over
the baseline model (grey line) on the SPP.

difference as the dependent variable (Hutchison et al., 2008),
or ignored the unprimed RT entirely (Mandera et al., 2017;
Günther et al., 2016; Ettinger & Linzen, 2016), we use un-
primed RT as a covariate.
Setup. We conduct four regression analyses over all the pairs
in the SPP in modelling LDT primed RT, averaging over the
two stimulus onset asynchronies of 200ms and 1200ms. As a
baseline model, we include the lexical characteristics of both
target and prime (length, orthographic neighbourhood density
and log-frequency in SUBTLEXUS), and the unprimed RT
(from the Semantic Priming Project). The second and third
analyses include one of FOS and SOS, respectively, while the
fourth includes both variables as predictors. We exclude any
item that has missing data for any of the independent vari-
ables, leaving us with 6,477 (out of 6,644) items.
Results & Discussion. Fig. 2 shows that adding either mea-
sure of similarity, FOS or SOS, results in a clear improvement
of R2 over the baseline. Further, adding both measures – i.e.,
considering both paradigmatic and syntagmatic similarity –
results in a further small but significant increase in R2 to .546
(t6,466 = −13.45, p < 0.001) over the models with only one
of the DSM measures.

It is apparent from Fig. 2 that syntagmatic similarity in
word2vec is a significant factor. Using only paradigmatic
similarity in this DSM, as Mandera et al. (2017); Ettinger &
Linzen (2016) do, means missing out on a significant source
of explanation of behavioural effects. Since FOS and SOS are
representative of syntagmatic and paradigmatic similarity, we
conclude that semantic priming is facilitated by both substi-
tutability of the prime-target as well as their co-occurrence.

Analysis on Related Pairs
Having shown that both FOS and SOS are predictive of prim-
ing effects across related and unrelated pairs, we next raise
the question of whether the two measures capture different
kinds of priming effects in the data. In particular, we ask
whether FOS is a better predictor of the priming effect on
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Figure 3: Partial correlation of semantic similarity measures
(FOS and SOS) with RTs for paradigmatically and syntag-
matically related words. p < 0.001 in all categories except
SOS correlation with syntagmatically-related pairs. See foot-
note 4 for discussion of the green triangles.

syntagmatically related pairs, and SOS is a better predictor of
the priming effect on paradigmatically related pairs.
Set-up. In these regressions, we use the same split of the SPP
prime–target pairs into syntagmatically related and paradig-
matically related pairs as we did in our earlier ranking anal-
ysis. For both categories, we calculated two partial correla-
tions: between primed RT and FOS, and between primed RT
and SOS. We use the same covariates as above (length, ortho-
graphic neighbourhood density, log-frequency, and unprimed
RT). We also partial out the the forward association strength
and backward association strength of each pair; these are two
common covariates used in semantic priming research be-
cause of their known effect on the priming effect (Hutchison
et al., 2008; Mandera et al., 2017).3

After partialing out these variables, we investigate the
unique contribution of each of our two measures of similar-
ity. The unique effect of SOS is determined by first partialing
out the FOS and then determining the correlation with the re-
maining variance, and vice versa. We run each of these anal-
yses per group of words: once for paradigmatically related
words (where we expect SOS to be the more powerful pre-
dictor) and once for the syntagmatically related words (where
we expect FOS to be the more powerful predictor).
Results & Discussion. Fig. 3 shows that, as expected, only
FOS has a significant partial correlation with primed RT
(r = −0.197, p < 0.001) for syntagmatically related words,
and SOS does not (r = 0.022, p = 0.6). On the other hand,
both FOS (r =−0.107, p < 0.001) and SOS (r =−0.08, p <
0.001) provide significant unique contributions to the predic-

3The forward association strength refers to the proportion of sub-
jects that responded with the target word given the prime word as a
cue in the Nelson et al. (2004) association norms. Conversely, the
backward association strength refers to the proportion of subjects
that responded with the prime word given the target word as a cue.
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tion of primed RT for paradigmatically related words. That
is, both degree of substitutability and degree of co-occurrence
contribute to an explanation of primed lexical processing time
for paradigmatically related words. Presumably, the process-
ing time of fork primed by spoon is facilitated by the high
substitutability of the words as well as their frequent co-
occurrence (Justeson & Katz, 1991). Conversely, the pro-
cessing time of fork primed by eat is only facilitated by their
frequent co-occurrence.4

This result is interesting because it contrasts with other
analyses of priming with distributional models, which have
suggested that measures of paradigmatic similarity are im-
portant in capturing priming effects of paradigmatic relations
while measures of syntagmatic similarity are not (Jones et al.,
2006; Günther et al., 2016).

Semantic Neighbourhood Density Effects
In our second analysis, we apply our approach of separating
semantic similarity into paradigmatic and syntagmatic simi-
larity to the study of another semantic effect in lexical pro-
cessing. Buchanan, Westbury, & Burgess (2001) introduce
the concept of semantic neighbourhood density, measured by
the mean distance between the target word and its 10 near-
est neighbours in a DSM (i.e., its semantic neighbourhood).
Using HAL (Lund et al., 1995) as their DSM, they show that
words with a high semantic neighbourhood density are pro-
cessed faster than words with a low semantic neighbourhood
density, all else being equal. The rationale for this effect is
that words with a higher density have a highly concentrated
area of spreading activation, resulting in quicker processing.

Here, we explore the nature of the semantic neighbour-
hood effect further by asking what kind of semantic similarity
drives it. We first define paradigmatic semantic neighbour-
hood density (PSND) as the mean SOS between a target word
and its 10 most SOS-similar neighbours. This score indicates
how many highly substitutable words there are for some tar-
get word. Next, we define syntagmatic semantic neighbour-
hood density (SSND) as the mean FOS between a target word
and its 10 most FOS-similar neighbours. This indicates how
many frequently co-occurring words a target word has. These
two indices reflect different views on the nature of such se-
mantic neighbourhoods, with PSND representing a word hav-
ing many substitutes, and SSND representing a word having
many transitional possibilities.

We hypothesize that both PSND and SSND facilitate pro-
cessing in an LDT, as tasks such as free association (Nelson et
al., 2004) indicate that cue words can activate both paradig-
matically and syntagmatically related words, and that high
degrees of activation of either (as measured through neigh-
bourhood density) can be expected to facilitate lexical pro-
cessing.

4As Fig. 3 shows, not controlling for the effect of the unprimed
target RT results in a considerable increase of the the effect of FOS
r = −0.107 to r = −0.173. Controlling for the unprimed target RT
is crucial, lest the effects of DSM similarity be overstated.

Setup. We use RTs for words in the (non-primed) visual lexi-
cal decision task (LDT) of the SPP. In order to isolate any po-
tential influence of PSND and SSND from well-understood
low-level effects, we partial out the effects of word length,
log frequency, and orthographic neighbourhood size and keep
the residual variance. On this residual variance, we study
the unique explanatory role of PSND by first partialing out
SSND, and that of SSND by first partialing out PSND. We
perform the analysis on the 3,814 words in the SPP that have
values for the aforementioned properties.
Results & Discussion. Partialing out the effect of PSND, we
find that SSND is significantly negatively correlated with RT
(r = −.23, p < 0.001), meaning that the higher the average
FOS is between a target word and its 10 nearest neighbours,
the lower its reaction time in visual lexical decision, in line
with the findings of Buchanan et al. (2001). However, when
we partial out the effect of SSND, we do not find a significant
correlation (r =−.01, p = 0.35). This result suggests that in
the single-word lexical decision task, a word that has a rela-
tively high level of FOS with its closest neighbours, such as
school (having a standardized SSND of 1.11) , will be rec-
ognized more quickly than words that do not (e.g., theory,
having a standardized SSND of only 0.33 to its nearest neigh-
bours; cf. Table 1 for examples of both words).

Thus, there appears to be a clear effect of frequent co-
occurrence with other words in facilitation of word recogni-
tion in an LDT. Meanwhile, substitutability does not seem
to have an independent contribution to the explanation of
the density effect. Whereas the approach of Buchanan et al.
(2001) does not, and in fact cannot, consider these alterna-
tives separately, the architecture of CBOW and our similarity
measures defined over it provide a way to study the effects of
different kinds of semantic similarity in isolation.

General Discussion
Semantic similarity in distributed semantic models (DSMs)
is frequently invoked as an explanation in lexical process-
ing studies. However, such similarity is often taken to be
a monolithic concept (Ettinger & Linzen, 2016; Mandera et
al., 2017), in contrast to prior work demonstrating the rel-
evance of distinguishing different kinds of similarity (Lund
et al., 1995; Jones et al., 2006; Günther et al., 2016). We
propose a novel way of using the representational poten-
tial of the successful word2vec DSM (Mikolov et al., 2013),
used elsewhere as a source of monolithic semantic similar-
ity (Mandera et al., 2017; Ettinger & Linzen, 2016), to cap-
ture a well-known distinction between syntagmatic, or first-
order similarity (frequent co-occurrence in a narrow context),
and paradigmatic, or second-order similarity (substitutability)
(Schütze & Pedersen, 1993; Grefenstette, 1994). Following
Levy et al. (2015), we use word2vec’s representation of each
word in two distinct matrices to operationalize first-order sim-
ilarity in word2vec as between-matrix similarity, and second-
order similarity as within-matrix similarity (within the input
matrix).
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In our first experiment, we show that both first- and second-
order similarity uniquely predict variance on a primed lexical
decision task on the data of the Semantic Priming Project
(Hutchison et al., 2013). We furthermore find that, when
splitting prime–target pairs into syntagmatically related ones
and paradigmatically related ones, an asymmetry emerges:
whereas both first-order similarity and second-order similar-
ity are unique predictors of primed RT for paradigmatically
related pairs, only first-order, but not second-order similarity,
uniquely predicts syntagmatically related pairs.

Next, we generalize our approach by looking at the facil-
itatory effect on unprimed lexical decision that Buchanan et
al. (2001) attribute to semantic neighbourhood density (the
average similarity between a target word and its ten nearest
neighbours in a DSM). Calculating semantic neighbourhood
density based on first-order similarity vs. second-order sim-
ilarity shows that it is the former that uniquely explains the
effect Buchanan et al. found.

Our analysis illustrates the importance of considering the
type of semantic similarity a DSM measure is sensitive to
and the necessity to consider more than one type of semantic
similarity to explain behavioural results. While such issues
have previously been raised for other models (Jones et al.,
2006; Günther et al., 2016), we demonstrate their relevance
for word2vec as well: the most frequently used semantic sim-
ilarity measure in word2vec arguably better captures word
substitutability than frame or association-based similarity.

Whereas the modeling study for priming shows that both
kinds of similarity play a role, the asymmetry between first-
order similarity and second-order similarity is striking. While
the dominance of first-order similarity may be due to task or
design effects in the experimental set-up, it raises an interest-
ing question for follow-up studies, namely whether knowl-
edge of simple co-occurrence patterns is the true cause of
(some) semantic priming effects and semantic neighbourhood
density effects. That is: should we, in these cases, attribute
the observed effects to the processing expectations associated
with words rather than patterns of substitutability?

A further important topic for future research is understand-
ing the relation between the similarities in the various DSMs
better. A fuller comparison of the various DSMs and their
variants (e.g., LSA, HAL, BEAGLE) on the same sets of data
would be a first step in the direction of a fuller understanding
of how distributional properties correspond to psycholinguis-
tic constructs of word meaning.

Additionally, future research should be directed at compar-
ing and combining DSM-based approaches discussed in this
work with graph-theoretical approaches in investigating lex-
ical processing phenomena (Kenett et al., 2017; Steyvers &
Tenenbaum, 2005). Previous work has opted for constructing
semantic graphs using results from word association tasks in-
stead of DSMs, partly motivated by observations that DSMs
do not model syntagmatic relations such as red – roses well
(Kenett, 2019). As shown in this work, such a limitation is
not present with the computational measures of FOS and SOS

derived from the word2vec model.
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