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Abstract

When integrating information in real time from multiple
modalities or sources, such as when navigating with the help
of GPS voice instructions along with a visual map, a decision-
maker is faced with a difficult cue integration problem. The
two sources, in this case visual and spoken, have potentially
very different interpretations or presumed reliability. When
making decisions in real time, how do we combine cues com-
ing from visual and linguistic evidence sources? In a sequence
of three studies we asked participants to navigate through a
set of virtual mazes using a head-mounted virtual reality dis-
play. Each maze consisted of a series of T intersections, at
each of which the subject was presented with a visual cue and a
spoken cue, each separately indicating which direction to con-
tinue through the maze. However the two cues did not always
agree, forcing the subject to make a decision about which cue
to “trust.” Each type of cue had a certain level of reliability
(probability of providing correct guidance), independent from
the other cue. Subjects learned over the course of trials how
much to follow each cue, but we found that they generally
trusted spoken cues more than visual ones, notwithstanding
the objectively matched reliability levels. Finally, we show
how subjects’ tendency to favor the spoken cue can be mod-
eled as a Bayesian prior favoring trusting such sources more
than visual ones.
Keywords: multimodal integration; navigation; Bayesian in-
ference; virtual reality

Navigation as a Decision-making Problem
Navigation, the process by which an agent chooses a path
through the environment, has been studied from the point
of view of cognitive strategy (Loomis, Klatzky, Golledge,
& Philbeck, 1999; Golledge, 2003), computation (Durrant-
Whyte & Bailey, 2006) and neural representation (Andersen,
Snyder, Bradley, & Xing, 1997). The cognitive component
of navigation—often referred to as wayfinding— requires the
agent to integrate information from multiple sources (Deneve
& Pouget, 2004), including both environmental cues and in-
ternal representations, in order to choose a path that optimizes
success in arriving at a target location. In this work we treat
navigation as a decision problem, focusing on how disparate
and potentially conflicting information is integrated to arrive
at a decision about which way to go.

Consider for example the problem faced by a driver navi-
gating with the assistance of a GPS device (Holland, Morse,
& Gedenryd, 2002). The driver must integrate visual cues
about which way to turn (e.g. road structure and signage) with
spoken instructions from the GPS explicitly indicating which
way to turn at each intersection. If these cues conflict—for

example, the GPS says to turn left when a visible sign sug-
gests turning right—the driver must make a decision in the
face of what is traditionally called cue conflict. In princi-
ple, in such a situation, the driver may have a prior beliefs
about which cue is more reliable, which can be thought of as
a Bayesian prior over the probability that each cue is likely to
be accurate. Which cue will they “trust” more, and how do
they integrate evidence from sources of various degrees of re-
liability? The experiment below is designed to answer these
questions, with the goal of quantifying subjects’ tendency to
rely on each type of cue source in a Bayesian framework.

There is a substantial literature on cue combination (Landy,
Maloney, Johnston, & Young, 1995), much of which suggests
that human observers integrate cues in an approximately op-
timal fashion (Cheng, Shettleworth, Huttenlocher, & Rieser,
2007). In an optimal framework, each cue is weighted ac-
cording to its reliability (for Gaussian cues, often quantified
as the inverse of the variance, see Yuille & Bülthoff, 1996).
Visual cues have often been regarded as dominant over other
cues (Colavita, 1974; Egeth & Sager, 1977), though in more
modern treatments this has been attributed to their greater re-
liability and thus higher weight (Ernst & Banks, 2002). In
some contexts auditory cues have been found to predominate
over visual ones (Grahn, Henry, & McAuley, 2011), though
again this has been argued to reflect their greater reliability in
those contexts (Burr, Banks, & Morrone, 2009). Hence while
individual cues vary in reliability, human decisions seem gen-
erally to integrate them in an approximately rational fashion.

However the juxtaposition of visual and spoken (auditory
linguistic) cues faced by the driver using the GPS—and fairly
ubiquitous in other natural contexts—does not seem to have
been addressed in the literature, and raises a number of novel
issues. As discussed below, spoken cues may carry a subjec-
tive weight potentially disproportional to their objective reli-
ability. So in the experiments we conducted, we asked sub-
jects to navigate using a combination of visual and spoken
cues, whose statistical reliability we controlled and manipu-
lated. The overall goal was to understand how such cues are
integrated, and in particular to quantify the degree of “trust”
subjects allocate to different kinds of information sources.

Experiments
We created a set of nine mazes in a virtual reality (VR) envi-
ronment which subjects experienced through a head-mounted
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display (Fig. 1). Each maze consists of a sequence of 32
T-junctions (see partial example, Fig. 1a) where the subject
must choose to turn left or right, with one direction leading to
a continuation of the maze (the correct choice) and the other
to a dead end (the incorrect one).

(a) (b)

Figure 1: (a) Example overview of part of a sample maze, show-
ing the sequence of T-junctions (b) Inside the virtual maze, showing
visual cue (arrow) at a T-junction.

Subjects advanced through the maze using a keyboard, and
turned left or right by turning their head. As the subject ap-
proached each intersection, they were presented with a visual
cue indicating which direction to turn (e.g. in Exp. 1, a large
red left or right arrow floating against the rear wall, Fig. 1b)
and an spoken cue instructing them to “go left” or “go right”
which was synchronized with the onset of the visual cue sub-
jects listened to the spoken cue through headphones and the
sound volume was the same on each side). Critically, the two
cues were not 100% reliable (see details below) and not al-
ways in agreement with each other. Subjects were instructed
to make a decision rapidly and to avoid attempting to look
ahead before committing to a choice. After making a turn,
the subject received feedback by seeing either an open cor-
ridor (indicating a correct choice) or a brick wall (an incor-
rect one). The main dependent variable was their sequence
of choices (left or right) at each point in the maze, reflecting
both their a priori trust in each cue as well as their judgment
about the trustworthiness of each cue based on the accumu-
lating evidence from previous trials. The choice was recorded
manually by the experimenter.

We ran three versions of this experiment (Exps. 1–3) which
differed in the way cues were presented, as explained below.
In each of the experiments, each one of the nine mazes con-
sisted of 32 T-intersections, at 16 of which the maze con-
tinued left and at 16 of which it continued right, in random
order. (We kept the number of intersections low in order
to limit trial length to about three minutes to minimize the
risk of dizziness.) Within a given maze, each cue provided
correct guidance on a fixed proportion of trials and incor-
rect guidance on the others, a proportion we refer to as the
cue’s reliability. (Note that we use this term to mean liter-
ally the probability of conveying the correct information, not
as a synonym for the optimal cue weight as often done in
connection to Gaussian cues.) Reliability levels were 25%,
50% and 75% for each cue type, with visual cue reliability

crossed with spoken cue reliability across mazes for total of
3×3= 9 reliability conditions. For example, on a given maze
the visual cue might be 75% reliable but the spoken cue 25%,
meaning that on .75× .25× 32 = 6 intersections both cues
were correct, while on .25× .25× 32 = 2 intersections the
visual cue was incorrect but the spoken one was correct, and
so forth. Subjects were encouraged to consider each maze a
completely new situation with cues to be evaluated de novo.
To encourage participants to treat each maze as a completely
new situation, the background colors were different in each
condition. Each subject ran all nine conditions in random or-
der, so across the entire experiment visual and spoken relia-
bility rate were equated. Participants were undergraduate and
graduate students at Rutgers University, all with normal hear-
ing and normal or corrected-to-normal vision. Participants
using glasses were excluded because of incompatibility with
the VR headset. Each experiment was run on a completely
new set of participants. Note that because of the nature of
the task, which involves frequent accelerated movements and
head turns, a sizable portion of the participants experienced
dizziness and were unable to complete the task. This diffi-
culty is partly responsible for the small number of subjects,
in light of which we treat our conclusions as preliminary.

Experiment 1. In Exp. 1 the visual cue was a large red ar-
row (pointing left or right) projected against the back wall of
the T-junction (Fig. 1b), and the spoken cue was a voice say-
ing “go left” or “go right” recorded by a female native English
speaker. In order to avoid giving either visual or spoken cues
temporal priority, we used auditory software (Praat 6.0.16,
Boersma & Weenink, 2018) to determine the point in time at
which the voice initiated the key disambiguating word “right”
or “left”, and synchronized it with the onset of the visual cue.

Subjects, Exp. 1. Data were collected from 5 subjects for
Exp. 1 (3 women, 2 men). Subjects were ignorant of the goal
of the study and were paid for their participation. Because the
use of the VR headset (Oculus Rift) can lead to nausea, par-
ticipants were allowed to take breaks whenever they wanted.
All the studies were approved by the Rutgers IRB.

Results, Exp. 1. We analyzed only discordant trials, i.e.
trials on which visual and spoken cues disagreed. Fig. 2
shows plots of the proportion of visual-following vs spoken-
following choices on such trials, as a function of cue reliabil-
ity. The figure includes individual subject plots as well as an
aggregate plot showing the mean over subjects. The results
show a clear and consistent bias in favor of the spoken cue,
illustrated by the offset in each plot of the red curve over the
blue.

To test models comparing the effect of factors such as the
nature of the cue and the cue’s reliability level, we analyzed
the number of times a participant chose a given cue in discor-
dant trials with a 2 × 2 Bayesian ANOVA with default JZS
priors and including a random effect for individual subjects
(Rouder, Morey, Speckman, & Province, 2012). The factors
were the type of cue (spoken or visual) and the reliability level
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(25%, 50% or 75%).
Results showed that including either the cue (BF10 =

18.22± .14%) or the reliability level (BF10 = 60.78± .18%)
as predictors improved the model with respect to the null
model in which the variance is only explained by individ-
ual differences. A model including both cue and reliabil-
ity as predictors was strongly favored over any other model
(BF10 = 45842.85± .35%). The offset between spoken and
visual cues was more clear-cut in some subjects (e.g. #1) than
others (#4), but was present in each individual subject.

Subjects’ compliance with each cue increased with its ob-
jective reliability, as would be expected. The more each cue
gave the right answer, the more the subjects tended to follow
it. However above and beyond this dependence on the ac-
tual statistical properties of each cue, the subjects exhibited
a prior bias to find spoken instructions more believable than
visual guidance. We investigate this bias more carefully in
the modeling section below.

Figure 2: Plots showing the proportion of trials on which subjects
followed the visual cue (blue) or the spoken cue (red) in the discor-
dant cases in Exp. 1, across reliability levels (abscissa).

Experiment 2. It is possible that phonetic modulation of
the word “go” in the phrases “go left” or “go right” could give
subjects an early indication of the upcoming direction, thus
giving the spoken cue temporal priority (Allopenna, Mag-
nuson, & Tanenhaus, 1998). Hence in Exp. 2 we repeated
Exp. 1 except without the word “go” in the spoken instruc-
tion. Instead spoken cues consisted simply of the word “left”
or “right,” recorded by a female native English speaker.

Subjects, Exp. 2. Data were collected from 6 participants
in Exp. 2 (4 women, 2 men). Again, all participants were
ignorant of the goal of the study and were paid for their par-
ticipation.

Results, Exp. 2. Fig. 3 shows plots of the proportion of
visual-following vs spoken-following choices as a function
of cue type and cue reliability on discordant trials. As can be

Figure 3: Plots showing the proportion of trials on which subjects
followed the visual cue (blue) or the spoken cue (red) in the discor-
dant cases in Exp. 2, across reliability levels (abscissa).

seen in the plots, both cue type and reliability show effects
in the same direction as in Exp. 1, but both effects are now
swamped by noise, and neither a model based on cue nor a
model based on reliability is favored over the null model (cue
type: BF10 = .67± .28%; reliability BF10 = .56± .19%). Ev-
idently, the modification of the spoken instruction substan-
tially diminished its value as a cue, perhaps because the one-
word version (“left” or “right”) is no longer a syntactically or
pragmatically well-formed utterance.

Experiment 3. We wondered whether the unexpectedly
low weight our subjects placed on the visual cue was because
the cue itself, a static arrow, was simply not salient enough to
compete with spoken instructions. Motion is a simple manip-
ulation that is known to increase visual salience. For example
the onset of motion attracts attention in both adults (Abrams
& Christ, 2003) and infants (Farroni, Johnson, Brockbank, &
Simion, 2000). So in Exp. 3 we increased the salience of the
visual cue by replacing the static arrow used in Exps. 1 and 2
with a moving arrow “flowing” in the indicated direction. The
goal was simply to check whether this change might tip the
balance of our subjects’ decisions in favor of the visual cue.
Exp. 3 was identical to Exp. 1 except for the nature of the vi-
sual cue, which was now an arrow sliding smoothly along the
back wall of the T-junction in the indicated direction. Maze
construction, subject instructions, reliability levels, and spo-
ken cue presentation were all as in Exp. 1.

Subjects, Exp. 3. Data were collected from 7 participants
in Exp. 3 (2 women, 5 men). Again all participants were
ignorant of the goal of the study and were paid for their par-
ticipation.

Results, Exp. 3. The results of Exp. 3 are shown in Fig. 4,
again showing the proportion of visual-following vs spoken-
following choices a function of cue type and cue reliability
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Figure 4: Plots showing the proportion of trials on which subjects
followed the visual cue (blue) and the spoken cue (red) in the dis-
cordant cases in Exp. 3, across reliability levels (abscissa).

on discordant trials. As in Exps. 1 and 2, most subjects show
a marked bias in favor of believing the spoken cue, on top of
the effect of objective statistical properties of each cue. In the
Bayesian ANOVA, the model including cue as an explana-
tory variable was favored moderately over the null model
(BF10 = 6.8±2%), while the model including reliability was
not (BF10 = .68±1%).

Hence these results again corroborate the basic finding of a
bias in favor of the spoken cue over the visual one, although
for some reason these subjects were unable to learn effec-
tively from feedback. Indeed the bias in favor of the spoken
cue seems to survive even when the salience of the visual cue
is substantially enhanced.

Modeling subjects’ bias
As our subjects progressed through each maze, they had to
judge the reliability of each cue source. At the start of each
maze, they had no evidence on which to base a judgment—
only whatever general expectations they might have about
source reliability. But as they progressed they accumulated
evidence about the statistical reliability of each cue type. Our
results above show that subjects are at least somewhat able
to learn from this evidence, in that their overall reliance on
each source increased monotonically with its objective sta-
tistical reliability: the more often a source was correct, the
more it was trusted. However their integration of the objec-
tive evidence was apparently also tempered by some bias, in
that they tended to trust spoken instructions more than visual
ones even though their reliabilities were objectively the same.
In this section we attempt to quantify this bias more precisely
using a Bayesian modeling framework.

In our experimental framework, each cue is a binary
source, on each trial randomly generating either a correct
instruction (“success”) or an incorrect one (“failure”) (cf.

Backus, 2009). The reliability of the source is simply the
probability λ of success, i.e. of issuing correct instructions.
If the subject assumes that successive trials are independent,
as is actually correct in our experiment, then this is a simple
example of a Bernoulli estimation problem, in which the goal
is to estimate the success probability λ from a sequence of
binary samples. That is, the subject observes a sequence of
correct and incorrect instructions from a given source, and on
that basis forms an estimate of the probability of correct in-
structions from that particular source going forward. In what
follows we model this learning process for our subjects, in
particular attempting to quantify the bias that they bring to
bear on this estimation problems—that is, any tendency they
might have infer high or low values of the reliability parame-
ter.

In a Bayesian framework, the bias is expressed by the prior
p(λ) over possible reliability levels λ. This distribution ex-
presses how plausible the observer finds each potential level
of reliability before collecting evidence—for example plac-
ing more probability mass on higher values of λ, indicating a
bias to trust the source, or on lower values, indicating a bias
to distrust it. Hence below, for each subject on each maze,
we quantify each subject’s bias for each cue type by estimat-
ing the prior distribution p(λ) most consistent with their se-
quence of decisions through the maze. This is the prior that
best explains the choices they actually made.

In Bayesian treatments, the prior over the Bernoulli proba-
bility parameter is usually assumed to follow a Beta distribu-
tion Beta(α,β), which is conjugate to the binomial likelihood
distribution which follows from the sampling model (Lindley
& Phillips, 1976; Griffiths, Kemp, & Tenenbaum, 2008). The
parameters α and β jointly characterize the distribution, re-
spectively modulating the bias for success (correct informa-
tion) and failure (misinformation). More specifically α and
β can be thought of as respectively the number of successes
and failures observed prior to the first sample. For example
a learner with a prior of Beta(7,2) has a bias equivalent to
actually having seen 7 correct instructions and 2 incorrect in-
structions before the experiment began. In this sense the sum
α+β represents the “confidence” the subject has in his or her
prior (i.e. the total number of previous observations the prior
is equivalent to) while the difference α−β represents the di-
rection of the bias (i.e. the degree to which the prior favors
trust over mistrust of the source). In (α,β) space (plotted in
figures below), the region α> β corresponds to a bias in favor
of trust, and the region α < β to bias to distrust it, and the di-
agonal α = β corresponds to perfect neutrality. By estimating
where a particular subject on a particular maze falls in this
space, we can precisely characterize the nature and direction
of their attitudes towards each type of cue source.

Note that this method of quantifying bias is broadly appli-
cable to any situation in which an observer must estimate the
reliability of a binary cue source, a situation exemplified by
our experiments but also very common in a range of real-life
contexts. Note also that although our analytical technique ap-
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pears to be novel, the underlying mathematics of Bernoulli
estimation is very conventional and can be found in any in-
troduction to Bayesian inference.

In the analysis that follows we assume that each subject has
separate Beta distributions Beta(αv,βv) and Beta(αs,βs) for
the reliability of the visual and spoken cues respectively. For
each subject for each maze, we estimated the four parame-
ters αv,βv,αs and βs via maximum likelihood (now including
all trials, discordant and concordant). That is, the fitted val-
ues of these parameter represent the priors that best explain
the subject’s pattern of responses. Below we plot these es-
timates in (α,β) space (visual parameters in blue, spoken in
red) which allows us to see the trust subjects placed in each
source. Figs. 5 shows the modeling results for Exps. 1–3.

Note we fitted each subject and each maze individually, and
then aggregated over subjects by estimating the distribution
over observers in (α,β)-space, which is shown in the plots.

As can be seen by the positions of the peaks, in Exps. 1
and 3 the spoken cue shows substantial bias towards “trust”
(α >β) while the visual cue is closer to neutral (α = β). The
bias is mostly absent in the density for Exp. 2 (Fig. 5b) except
for one cluster of estimates biased towards trusting the spo-
ken cue, consistent with our finding of a small non-significant
trend in this condition. Overall the results confirm the conclu-
sions we drew above, but quantifies the nature and distribu-
tion of the spoken bias more precisely.

Each of the plots shows some evidence of multimodality
in the density in (α,β) space. This implies the presence of
potentially distinct decision-making strategies. The Exp. 1
results, for example (Fig. 5a), suggest that most subjects in-
terpret the spoken cue in manner biased towards trust (a large
cluster below the α = β diagonal), while subjects biases to-
wards the visual cue are divided into two clusters, a large
one approximately neutral (on the diagonal) and a smaller
one strongly biased to trust (near α = 22,β = 3). Similarly
while the results of Exp. 3 broadly corroborated the bias to-
wards spoken cues found in Exp. 1, the density plots sug-
gest that most subjects were neutral to spoken cues (large
cluster on the diagonal) while the effect was created by a
smaller cluster biased towards trusting the spoken cue (at
about α = 30,β = 10)—while virtually none of the subjects
were biased to the visual cue. It would be interesting to cor-
relate such individual differences with other measurable per-
sonality or demographic factors, but our existing dataset does
not allow such an analysis.

Discussion
The main conclusion from our results is that when integrating
visual and spoken cues in a navigation task, subjects place a
higher a priori weight on spoken instructions. This cannot
be explained by the objective statistical evidence available to
them, which was equated between cue types. Instead it seems
to constitute a subjective bias on the part of (at least some of
the) subjects through which they interpret evidence. To be
sure, this does not mean their bias is “irrational;” indeed our

modeling shows that it can be well-accounted for by a ratio-
nal (i.e. Bayesian) inference process with Beta prior biased
towards believing that spoken sources usually emit correct in-
structions (αs −βs > αv −βv). In the real world, of course,
such a prior might be entirely reasonable.

Nominally, this main conclusion contradicts a number of
previous multimodal studies suggesting that visual cues are
generally weighted more heavily (e.g. Ghahramani, Wolp-
trt, & Jordan, 1997; Battaglia, Jacobs, & Aslin, 2003; Ernst
& Bülthoff, 2004; Alais & Burr, 2004). However our audi-
tory cues, unlike those in the relevant literature, comprised
linguistic instructions from an apparently human source, and
presumably the disparity derives in some way from this dif-
ference. Indeed this conclusion is bolstered by the finding
that the bias in favor of spoken cues was diminished or even
eliminated when the instructions were linguistically incom-
plete or ill-formed, as in Exp. 2.

Spoken instructions differ in a number of ways from non-
verbal auditory cues. First, spoken communication is sit-
uated in a social context given special status in decision-
making (Mesoudi, Whiten, & Dunbar, 2006; Rendell et al.,
2011). Listeners assume that speakers provide information
that is truthful and relevant to the situation (Grice, 1989).
Even 17-month-old human infants expect other humans (at
least in-group members) to provide helpful assistance (Jin
& Baillargeon, 2017). Of course, the visual cue might also
have originated from a human source, but the spoken cue
apparently makes this connection more subjectively salient.
Moreover, as our subjects were neurotypical adults with pre-
sumably intact theory of mind, they may have expected the
speaker to have knowledge of the maze that they themselves
lacked. In this sense, the priority they placed on spoken in-
structions may reflect known interactions between language
and theory of mind (de Villiers, 2007). This hypothesis
could be tested more directly by a manipulation in which
the speaker’s ability to personally see the hidden parts of the
maze was somehow conveyed to the subject. In the absence of
such a manipulation we can only infer that our subjects gener-
ally assumed that the speaker had up-to-date information, and
meant to accurately convey it to the listener. It is also unclear
whether the weight subjects placed on spoken cues reflected
their verbal nature or their auditory nature. These could be
deconfounded by using linguistic instructions that are not au-
ditory (i.e. written signage) and auditory instructions that are
not linguistic (e.g. a beep indicating direction).

In summary our main finding of a priority given to spo-
ken instructions may reflect previously-known biases—but
note that these biases have not generally been quantified in
as precise a manner as our Bayesian framework allows. More
broadly, these results point to the need to enlarge the study of
cue integration in decision making to include social and lin-
guistic contexts which are ubiquitous in human interaction.
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Figure 5: Contour plots of density estimates of α and β parameters
in (a) Exp. 1 (b) Exp. 2 and (c) (a) Exp. 3. Visual cue parameters
are in blue, spoken in red. Probability density below the line (α > β)
connotes a “trust” in the cue source (a prior favoring believing it is
usually reliable); above the line (α < β) connotes “distrust”; and the
diagonal (α = β) indicates neutrality.
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