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Abstract

The cerebellum is classically described in terms of its role in
motor control. Recent evidence suggests that the cerebellum
supports a wide variety of functions, including timing-related
cognitive tasks and perceptual prediction. Correspondingly,
deciphering cerebellar function may be important to advance
our understanding of cognitive processes. In this paper, we
build a model of eyeblink conditioning, an extensively studied
low-level function of the cerebellum. Building such a model
is of particular interest, since, as of now, it remains unclear
how exactly the cerebellum manages to learn and reproduce
the precise timings observed in eyeblink conditioning that are
potentially exploited by cognitive processes as well. We em-
ploy recent advances in large-scale neural network modeling
to build a biologically plausible spiking neural network based
on the cerebellar microcircuitry. We compare our simulation
results to neurophysiological data and demonstrate how the
recurrent Granule-Golgi subnetwork could generate the dynam-
ics representations required for triggering motor trajectories
in the Purkinje cell layer. Our model is capable of reproduc-
ing key properties of eyeblink conditioning, while generating
neurophysiological data that could be experimentally verified.
Keywords: cerebellum; classical conditioning; biologically
plausible spiking neural network; Neural Engineering Frame-
work; delay network

Introduction
Traditional clinical evidence portrays the cerebellum as sup-
porting the coordination of precise movements. In particular,
the cerebellum receives motor commands from cerebral cortex
that are combined with proprioceptive feedback, resulting in a
corrective signal that is relayed back to the motor pathways in
the brainstem and cerebral cortex (Splittgerber, 2018).

Recent evidence – ranging from studies in functional con-
nectivity, neuronal tracing, clinical pathology, to evolutionary
physiology – suggests that the tasks supported by the cerebel-
lum are not restricted to motor control alone. The cerebellum
may instead be recruited by various brain regions as a “co-
processor” to support brain functions related to higher-order
cognition, such as language-based thinking, working memory,
perceptual prediction, and tasks requiring precise timings in
general (Sullivan, 2010; Buckner, 2013; O’Reilly et al., 2008;
E et al., 2014). Understanding cerebellar function may thus be
crucial for gaining a better understanding of human cognition.

Fortunately, the cerebellar microcircuitry is extremely well-
studied (Ito, 2010; Llinás, 2010). It is found to be highly
regular, while primarily performing feed-forward processing.
The main feed-forward pathway is depicted in Figure 1: affer-
ent nerves from pre-cerebellar nuclei project as “mossy fibres”

onto granule cells in the cerebellar cortex. Cerebellar granule
cells account for the majority of neurons in the mammalian
brain – thus, the divergence of PC neurons onto this sheer
number of granule cells results in a large repertoire of stimulus
representations. Granule cell axons, the so called “parallel
fibres,” project onto the Purkinje cells, which inhibit neurons
in the cerebellar nucleus, that in turn project back onto the
brainstem and cerebral cortex. In addition to this primary path-
way, research has focused on recurrent connections between
the Golgi and granule cells, as well as the “climbing fibres”
originating from the Inferior Olive, which enable synaptic
weight modulation in the Granule-Prurkinje projection.

This circuitry has been interpreted by Marr (1969) as a (in
modern terms) “supervised learning machine” that relies on the
divergence of mossy fibres onto the granular layer for pattern
extraction, and olivary-modulated plasticity of the granule-
Purkinje projection for learning. The concepts explored in
this seminal work form the foundation of most models of
cerebellar function (Strata, 2009; Raymond & Medina, 2018).

A class of experiments that explores the role of the cere-
bellum in motor learning in its most simple form is eyeblink
conditioning. A puff of air is directed at the eye (unconditioned
stimulus; US), triggering the eyeblink reflex (unconditioned
response; UR). The US is paired with a neutral, conditioned
stimulus (CS), such as a tone or a flashing light, preceding
the US by a constant time offset ∆t. The subject learns an
association between the UR and the CS and will, over time,
form a conditioned response (CR) to the previously neutral CS.
Experiments indicate that the formation of the CR critically
depends on the cerebellum; previously learned CRs are absent
once the cerebellum is ablated (e.g., McCormick et al., 1981).

Central for the purposes of this paper is the observation that
the conditioned stimulus-response pair maintains timing. That
is, the CR is triggered a period ∆t after the CS, preserving
the original time offset between the conditioned and uncondi-
tioned stimulus. Despite detailed knowledge about cerebellar
microcircuitry, it is still unclear how the cerebellum learns and
replays these relatively precise timings.

In this paper, we construct a biologically plausible spiking
neural network model capable of learning timings. Our model
is based on the so called “delay network,” which we map
onto the recurrent Granule-Golgi subnetwork. We first discuss
related work, continue with a discussion of our model, and
finally compare our simulation results to empirical data.
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Figure 1: Schematic of the cerebellar microcircuit. Dashed projections and populations are not included in our model. Cerebellar
nucleus afferents affect both the excitatory and inhibitory sub-populations. The main feed-forward pathway is highlighted in
bold. PCN =̂ pre-cerebellar neurons/nuclei. pRN =̂ parvicellular Red Nucleus. Data from Ito, 2010; Llinás, 2010.

Related Work
There are two predominant types of computational models of
cerebellar timing: models assuming that afferent signals are
transformed by the cerebellar microcircuit into a “dynamics
representation” (Medina & Mauk, 2000), and models assum-
ing that the reproduction of timings is performed by mecha-
nisms intrinsic to individual Purkinje cells (Lusk et al., 2016).
While there is little neurophysiological data which conclu-
sively confirms or rules out any of these hypotheses, we focus
on the first idea, dynamics representations.

The idea of dynamics representation is that short bursts of
mossy fibre inputs – in particular, the signals corresponding to
the CS – are turned into a diverse set of prolonged activities
in the granular layer. Choosing the right synaptic weights be-
tween the granule and Purkinje cells approximates any desired
function over the recent history of the stimulus, for example a
function mapping from the CS onto the UR.

Classic hypotheses for dynamics representations include
delay lines, in which individual neurons represent a delayed
version of the input signal, spectral timing, in which the neural
activity follows a set of bell-shaped functions with different
offsets and widths, and, finally, neural activities corresponding
to oscillations with diverse phases and frequencies. While
successful in top-down models, the mechanisms that might
underlie these responses are unclear (Medina & Mauk, 2000).

More recent spiking models of cerebellar function (Rössert
et al., 2015) exploit the recurrent connection between the
Golgi and granule cells as a means to generate pseudo-random
dynamics, akin to neural reservoirs. In particular, rather than
postulating an intra-neural mechanism that creates a temporal
representation, this approach demonstrates that a temporal
representation can be created purely through the synaptic con-
nections between neurons.

Instead of relying on random dynamics, we present a sys-

tematic approach that approximates a mathematically optimal
dynamics representation in the spiking Granule-Golgi net-
work. By incorporating neurophysiological constraints into
our model we are able to qualitatively match experimental
data on eyeblink conditioning experiments in head-fixed mice
(Heiney et al., 2014) while only tuning four parameters.

Representing Time
As discussed above, our model builds on the existing hypothe-
sis that the granule cells in the cerebellum create a representa-
tion of the recent history of their inputs; it should be possible
to reconstruct the granule cell input from the recent past, given
their current activity.

We describe three different versions of the model, at dif-
ferent levels of abstraction. First, we give an abstract math-
ematical model where the “neurons” are ideal (non-spiking)
integrators. Next, we replace these “neurons” with recurrently
connected leaky integrate-and-fire (LIF) spiking neurons. Fi-
nally, we separate these neurons into excitatory granule cells
and inhibitory Golgi cells with realistic connectivity patterns.

Version 1: Ideal Mathematical Model
Voelker and Eliasmith (2018) derive an ideal “delay network”
memory by taking the Padé approximate of the continuous-
time delay F(s) = e−θs. This results in a linear dynamical
system of dimension q, where the state m forms a compressed
representation of the past history of the input u over the previ-
ous θ seconds:

ṁ = Am+Bu

θA = ai j ∈ Rq×q , ai j =

{
(2i+1)(−1) i < j ,
(2i+1)(−1)i− j+1 i≥ j ,

θB = bi ∈ Rq , bi = (2i+1)(−1)i .

(1)
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Figure 2: Three variants of the delay network. (A) Ideal mathematical implementation with integrators. (B-D) Constructing an
all-to-all recurrent LIF model of granule cells that approximates the ideal behaviour. (B) Communication channel that uses a
hidden layer of LIF neurons to represent m. (C) Adding an exponential synaptic filter and connecting the output back to the
input via the connection weight matrix τA+ I. This approximates the desired mathematical function (see text). (D) Combining
the weight matrices from (C) into a single recurrent weight matrix Wrec and input weight matrix Win. (E) Biologically plausible
implementation separating the recurrent connection into an excitatory granular and an inhibitory Golgi cell layer.

Importantly, the state at a previous point in time t−θ′ (where
0≤ θ′ ≤ θ) can be approximated by computing the dot product
between m and a decoding vector d(θ′):

u(t−θ
′) =

q−1

∑
`=0

m`d`(θ′) , where d` = P̃̀
(

θ′

θ

)
, (2)

and P̃̀ is the shifted Legendre polynomial of degree `.
This suggests the abstract model for the granule cells de-

picted in Figure 2A. If there was a separate cell implementing
a perfect integrator for each element in m with the correspond-
ing recurrent weights A and input weights B, the resulting
system should implement the delay network. The response of
this system to a pulse input is shown in Figure 3A. Notice that
the output is only an approximation of the input – in particular,
the pulse is spread out into a “bump”. The accuracy of the
representation depends on q, the number of dimensions in m.

Version 2: Recurrent All-to-All Network

Evidently, the assumptions made in the previous model are
nowhere close to being biologically plausible. As a first step
towards more biological realism, we replace the ideal inte-
grators with recurrently connected spiking leaky integrate-
and-fire (LIF) neurons with a simple synapse model while
maintaining a close approximation of the mathematical model.

Since the granule cells are meant to represent m, we start
with a single-hidden-layer network with q inputs and q outputs
(Figure 2B). The hidden layer neurons are LIF neurons with a
membrane time constant of 20 ms and a refractory period of
2 ms, with each neuron i receiving a bias input Jbias

i .
Such a network can be trained to behave as a communication

channel; that is, the input and output weights can be set such
that output of the network m̂ will be an approximation of the
input m. We call the input weights E (for encoder) and the
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Figure 3: Temporal representation in response to a 100ms
pulse for the three versions of the delay network with q = 6,
θ = 0.4. (A) Ideal mathematical implementation. (B) Single
population of 200 LIF neurons. Maximum firing rates be-
tween 50 and 100 Hz, τ = 60ms. The decoded value is filtered
by a 100 ms low-pass filter. Gray dots correspond to spikes
from 20 representative neurons. (C) Same as (B), but for the
Granule-Golgi circuit with 200 granule and 20 Golgi cells. (D)
Decoding a 200 ms delay using eq. (2).

output weights D (for decoder). While there are many methods
for generating such weights, here we randomly generate E and
Jbias such that the neurons exhibit diverse tuning properties
with maximum firing rates between 50 and 100 Hz. We then
use least-squares minimization over the space of possible m to
solve for weights D that minimize the average error ‖m−m̂‖2.

Given this standard feed-forward network, we can construct
a recurrent network that will approximate eq. (1). As depicted
in Figure 2C, we start by adding a synapse model before every
LIF neuron. This synapse model is the standard exponential
post-synaptic current model τ−1e−t/τ, where τ is the post-
synaptic current decay time-constant (Roth & van Rossum,
2009). Additionally, we multiply the input by τB, the output
m̂ by τA+ I, and connect this result back to the input m.

To analyze the behaviour of the resulting system, we first
note that the current-based synapse model is a linear operator
with unit DC-gain, so even though it is being applied at the
input to each neuron, it has the same effect as if it were applied
before the application of the E matrix and the bias Jbias. If the
original feed-forward network is a good communication chan-
nel, i.e., m̂≈m, then the addition of the synapse means that
the network will now produce an output that is approximately
m(t)∗ τ−1e−t/τ, where “∗” is the convolution operator.

The overall system with its recurrent connection will thus

have the following dynamics:

m(t) = (u(t)τB+m(t)(τA+ I))∗ τ
−1e−t/τ .

Converting into the Laplace domain and noting that the
Laplace transform of τ−1e−t/τ is 1/(1+ sτ), we get

M(s) =
(
U(s)τB+M(s)

)τA+ I
1+ sτ

⇔M(s)(1+ sτ) =U(s)τB+M(s)τA+M(s)

⇔M(s)s =U(s)B+M(s)A .

(3)

Converting back to the time domain yields ṁ = Am+Bu, the
linear dynamical system from eq. (1). Figure 3B illustrates
that our model indeed approximates the ideal dynamics.

Since there are no non-linearities other than the LIF neu-
rons, the various connection weight matrices can be multiplied
together to form matrices Win and Wrec that will produce the
identical behaviour (Figure 2D).

This general method for converting any dynamical system
into a recurrent neural network is the basis of the Neural
Engineering Framework (NEF; Eliasmith & Anderson, 2003),
and has been used for modelling cognitive phenomena such
as working memory (Singh & Eliasmith, 2006) and in the
creation of Spaun, the largest existing functional brain model
(Eliasmith et al., 2012).

Version 3: Golgi and Granule Cells
While the previous version of our model is certainly an im-
provement when it comes to biological plausibility, it still
ignores fundamental features of cerebellar physiology.

First of all, granule cells have no lateral connections. That
is, there is no correlate of the reccurent weight matrix Wrec
in nature. Instead, recurrent connections are mediated via
inhibitory interneurons, the Golgi cells (Ito, 2010). Second,
the previous version does not distinguish between excitatory
and inhibitory neurons; Win and Wrec contain both positive
and negative weights. In biology, granule cells exclusively
evoke excitatory currents and Golgi cells exclusively evoke
inhibitory currents. This is a specific instance of Dale’s prin-
ciple (Strata & Harvey, 1999). Finally, the previous version
assumes that each neuron i receives a constant bias current
Jbias

i , which has no clear biological correlate.
The last two issues have been addressed recently by Stöckel

and Eliasmith (2019). In short, one can still define the neural
tuning in terms of encoders E and bias currents Jbias. However,
these are merely normative, defining the expected behaviour
of individual cells when representing a value m. Instead of
solving for decoders D minimizing the error ‖m− m̂‖2, one
can directly solve for full weights matrices W in “current
space”, that have the same effect as applying a bias current
and an encoding vector. To see this, consider that each neuron
i in the post-population is supposed to receive an input current

Ji(m) = m · ei + Jbias
i . (4)
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In addition, we know that the input current of a neuron within
a spiking neural network is approximately given as

Ji(apre) = apre ·wi , (5)

where apre is a vector combining all pre-population activities.
Combining eqs. (4) and (5) results in a new optimization

problem that allows us to solve for synaptic weights wi for
each post neuron i. These equations can be extended to ap-
proximate arbitrary functions f (m) of values m represented
by a pre-population. Adding a non-negativity constraint fur-
ther allows us to account for Dale’s principle, resulting in a
non-negative least squares problem.

While we now know how to build networks that do not
rely on bias currents and mixed-sign weight matrices, we still
need to imprint the dynamics from eq. (1) onto a network that
spans multiple neural ensembles. In particular, we have to
account for two sets of synaptic filters, as well as the fact that
both the granule and Golgi cells receive mossy fibre input
(fig. 1). Assuming that both sets of synapses have the same
time-constant, one can show similarly to the proof in eq. (3)
that choosing the same transformations as above yields the
desired dynamics (proof omitted due to space constraints).
That is, the input weight matrices WPCN→Gr, WPCN→Go are
approximating the transformation τB, and the weight matrices
WGo→Gr, WGr→Go approximate the transformation τA+ I.

Our final network model is depicted in Figure 2E. Notice
that we account for lateral inhibitory Golgi cell connections
WGo→Go (Hull & Regehr, 2012). While this connection does
not have any effect on the high-level computation that is being
performed (the function being computed is f (m) = 0), it en-
sures that the Golgi cells receive a self-regulatory inhibitory
input current that moves the cells towards their desired work-
ing regime. The temporal representation produced by this
network is shown in Figure 3C.

Learning
Given the above model for the Golgi and granule cells, we can
now introduce learning into the model. The training signal
comes from the Inferior Olive (IO), and so it needs to represent
the difference between the CR and the UR. These are the two
inputs to the IO shown in Figure 1. The CR is the inhibitory
input from the Cerebellar Nucleus (CN), and the UR is the
excitatory input from the PCN.

To create a neural version of this, we use a similar approach
as in Version 2 of the granule/Golgi model, but without the
recurrence. That is, we train a single-hidden-layer neural
network for the IO, CN, and pRN, and then combine D and E
matrices to form connection weights.

To adjust the connection weights between the Granule cells
and the Purkinje cells, we use the following local learning rule,
where ωi j is the connection weight between the ith Granule
cell and the jth Purkinje cell, γ is a learning rate parameter, ai
is the spiking activity of the ith Granule cell, ak is the spiking
activity of the kth Inferior Olive cell, ω jk is the connection
weight from the kth Inferior Olive cell and the jth Purkinje

cell. W jk is the full matrix of these weights, computed by
multiplying the decoder D from the Inferior Olive and the
encoder E from the Purkinje cells. That is,

∆ωi j = γai(∑
k

akω jk) , W jk = EPurkinjeDIO .

This learning rule is the Prescribed Error Sensitivity (PES)
rule defined by MacNeil and Eliasmith (2011), based on the
classic delta learning rule.

Experiments and Results
Figure 4 shows the behaviour of a typical run of the detailed
version of our model performing the eye-blink conditioning
task over 500 trials. The model learns to have the eye closed
when the puff occurs. Most parameters were set based on
biological data; τ = 5ms except in the recurrent granule/Golgi
connections, where τGr,Go = 60ms (Dieudonné, 1998). We
simulate nGr = 200 granule cells and nGo = 20 Golgi cells.
The only free parameters are the learning rate γ = 0.00025,
τpRN = 100ms for the connections involving the pRN, and
τlearn = 200ms for the activity used for the learning rule. The
learning rate was adjusted to match the number of trials typi-
cally needed for mice to learn the task (∼ 300 trials). Velocity
commands smaller than vth = 2mms−1 are counted as zero.

While a detailed analysis of this model is still ongoing, two
interesting phenomena have been observed in the model so far.
First, the model does not work if the synaptic time constant of
the neurotransmitters in the Golgi/granule system significantly
greater than the actual biological measured value of 70ms.
We are still analyzing exactly why this happens, but it only
happens for the fully detailed version of the model, not the
simpler recurrent all-to-all version.

Second, the model only learns to close the eye before the
puff actually happens if the two neurotransmitter time con-
stants τpRN and τlearn are quite long (∼ 100ms). Otherwise,
the system learns to close the eye soon after the puff. This
is because it is trying to do exactly what we have asked it to:
learn to re-create the same motor pattern as is produced by
the unconditioned reflex. But, the unconditioned reflex closes
the eye after the puff happens, which is too late. However,
by slowing the passage of information from the Cerebellar
Nucleus back to the Inferior Olive (where the comparison be-
tween the UR and CR occurs), we are effectively comparing
the reflex at one point in time to the generated output from the
cerebellum at an earlier point in time. This allows the new
learned reflex to occur slightly earlier than the unconditioned
response, and thus the eye closes before the air puff.

Discussion and Future Work
First, we have shown how to take an abstract model of cere-
bellar function and iteratively add more detail. This general
methodology will allow us to continue to refine this model,
adding details and determining how these details affect the
overall performance of the model.

We are currently building on this work in two directions.
First, we are performing a more detailed analysis of how dif-
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ferent parameters affect (or do not affect) model performance.
Second, we are adding more detailed types of connectivity
constraints to our model. For example, granule cells only get
input from three to five mossy fibres, and are only connected
to Golgi cells in their immediate spatial vicinity.

While our model of eyeblink conditioning is concerned
with a relatively low-level task, we hope that the techniques
presented here for mapping function onto brain microcircuits
are applicable to models of higher-level cognitive function as
well. In particular, it would be interesting to see whether our
model of the Granule-Golgi circuit in conjunction with the
Purkinje cell’s plasticity could serve as a supervised learner
for timings in cognitive and perceptual tasks, as suggested by
various studies (O’Reilly et al., 2008; E et al., 2014).
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