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Abstract
Humans frequently overestimate the likelihood of desirable
events while underestimating the likelihood of undesirable
ones: a phenomenon known as unrealistic optimism. Previ-
ously, it was suggested that unrealistic optimism arises from
asymmetric belief updating, with a relatively reduced coding
of undesirable information. Prior studies have shown that a
reinforcement learning (RL) model with asymmetric learning
rates (greater for a positive prediction error than a negative
prediction error) could account for unrealistic optimism in a
bandit task, in particular the tendency of human subjects to
persistently choosing a single option when there are multi-
ple equally good options. Here, we propose an alternative
explanation of such persistent behavior, by modeling human
behavior using a Bayesian hidden Markov model, the Dy-
namic Belief Model (DBM). We find that DBM captures hu-
man choice behavior better than the previously proposed asym-
metric RL model. Whereas asymmetric RL attains a measure
of optimism by giving better-than-expected outcomes higher
learning weights compared to worse-than-expected outcomes,
DBM does so by progressively devaluing the unchosen op-
tions, thus placing a greater emphasis on choice history inde-
pendent of reward outcome (e.g. an oft-chosen option might
continue to be preferred even if it has not been particularly re-
warding), which has broadly been shown to underlie sequential
effects in a variety of behavioral settings. Moreover, previous
work showed that the devaluation of unchosen options in DBM
helps to compensate for a default assumption of environmental
non-stationarity, thus allowing the decision-maker to both be
more adaptive in changing environments and still obtain near-
optimal performance in stationary environments. Thus, the
current work suggests both a novel rationale and mechanism
for persistent behavior in bandit tasks.
Keywords: unrealistic optimism; decision making; multi-
armed bandit; reinforcement learning; Bayesian modeling

Introduction
Humans frequently overestimate the likelihood of desirable
events while underestimating the likelihood of undesirable
ones: a phenomenon known as unrealistic optimism. For
instance, smokers, both former and current ones, underesti-
mate their risk of developing lung cancer and cardiovascu-
lar diseases (Masiero, Riva, Oliveri, Fioretti, & Pravettoni,
2016). Likewise, university students overestimate their life
expectancy (Clarke, Lovegrove, Williams, & Machperson,
2000), and underestimate possibilities of suffering from heart
problems (Green, Grant, Hill, Brizzolara, & Belmont, 2003)
and alcoholism (Dillard, Midboe, & Klein, 2009).

One hypothesized mechanism for optimism bias is asym-
metrical belief updating (Sharot, Korn, & Dolan, 2011),
whereby belief-updating is more influenced by better-than-
expected outcomes than by worse-than-expected outcomes.

This hypothesis has been elaborated under a reinforcement
learning framework, via a modification to the basic Rescorla-
Wagner delta-rule learning model (RW) (Rescorla & Wagner,
1972), termed the RW±model (Lefebvre, Lebreton, Meyniel,
Bourgeois-Gironde, & Palminteri, 2017). RW± includes two
different learning rates, corresponding to updates following
positive and negative prediction errors, respectively. It was
shown that RW± better captures human behavior in a two-
armed bandit task than RW (Lefebvre et al., 2017). More-
over, subjects whose behavior was better explained by RW±
than basic RW showed significantly higher learning rates for
positive prediction errors, consistent with the suggestion that
unrealistic optimism arises from diminished coding of unde-
sirable information (Sharot, 2011).

Here, we propose an alternative explanation of ”optimistic”
behavior in the bandit task. We recently found that humans
underestimate reward rate of unchosen options in the bandit
task (Guo & Yu, 2018), which would encourage sticking with
a recently favored option just as asymmetric updating does,
as the positive outcomes are amplified. However, unlike the
asymmetric RL account, which only biases belief updating
and choices based on reward outcome (positive or negative),
underestimation of unchosen options leads to their increasing
devaluation over time, thus allowing choice history to bias
future choices in addition to reward history. For example,
an oft-chosen option might continue to be favored even if it
has not been particularly rewarding (because the very fact
of having chosen it often makes the alternatives appear less
inviting). This form of choice-induced bias would be con-
sistent with a broad literature in the study of sequential ef-
fects, which has found that choice history biases humans to
repeatedly chose a previously chosen option, under a vari-
ety of (non-bandit) behavioral settings (Soetens, C, & Huet-
ing, 1985; Wilder, Jones, & Mozer, 2009; Jones, T, Mozer, &
Wilder, 2013; Urai, de Gee, Tsetsos, & Donner, 2019).

In this work, we model human bandit choice behavior us-
ing a Bayesian hidden Markov model, the Dynamic Belief
Model (DBM) (Yu & Cohen, 2009), previously shown to be
a good candidate for capturing behavioral data in the multi-
armed bandit task (Zhang & Yu, 2013; Guo & Yu, 2018).
DBM assumes the reward distribution can undergo change-
point dynamics, i.e. occasional re-sampled from a prior dis-
tribution (Yu & Cohen, 2009), and thus updates the reward
rate estimate by exponentially forgetting past observations
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(like RW), but in addition persistently injecting a constant
prior bias into the estimate of all the arms in every trial
(Ryali, Reddy, & Yu, 2018). In particular, this prior bias af-
fects unchosen options much more than the chosen option,
whereby the prior pessimism is countered by empirical ob-
servations. It was suggested that this relative devaluation of
unchosen options helps the subject to counter an excessive
exploratory tendency induced by the non-stationarity assump-
tion of DBM, resulting in overall more rewards earned (Guo
& Yu, 2018). DBM was found to better account for human
behavior than other learning models including RW, but RW±
was not tested (Zhang & Yu, 2013; Guo & Yu, 2018).

We re-analyze data from the main experiment of a recent
paper (Lefebvre et al., 2017) that found RW± accounts for
human behavior better than basic RW. We expect RW± and
DBM to both capture human unrealistic optimism to some
extent. However, the underlying mechanisms they entail are
different: RW± characterizes unrealistic optimism as asym-
metrically reduced learning rate for negative prediction errors
(or equivalently, asymmetrically higher learning rate for pos-
itive prediction errors), while DBM captures unrealistic opti-
mism as a result of prior reward rate underestimation and de-
valuation of unchosen options. Investigating the differences
between the two hypotheses will therefore offer valuable in-
sights into the computational mechanism that underpins un-
realistic optimism, and help guide analysis of relevant neural
data to unveil the neural basis of unrealistic optimism.

Results

We re-analyze human behavioral data from a two-armed ban-
dit task (Lefebvre et al., 2017) (see details in Methods).
We fit the behavioral data with two learning models, RW±
(Lefebvre et al., 2017) and the Dynamic Belief Model (DBM)
(Yu & Cohen, 2009; Zhang & Yu, 2013; Guo & Yu, 2018).
The RW± model uses two different learning rates, ε+ and
ε−, for positive and negative prediction errors, respectively.
The generative model of DBM assumes the reward rates to
undergo discrete, unsignaled changes (change-point dynam-
ics): with probability α, the reward rate of an option stays
the same, and with probability 1−α, it is re-sampled from
a general prior distribution. On each trial, DBM updates
the posterior reward rate distribution of the chosen arm us-
ing Bayes’ Rule; on the next trial, it updates the predictive
prior distribution of the chosen option by mixing its posterior
distribution on the last trial with the general prior distribution,
with the mixing proportion being determined by α (see Meth-
ods). Separately, we have shown that the mean reward rate
of DBM is well-approximated by a reinforcement-learning-
like rule that mixes Rescorla-Wagner delta rule (RW) with
a persistent prior bias p0, whose value is the prior mean of
DBM (Ryali et al., 2018). For the unchosen arm, there is
no observation, and therefore no Bayes’ Rule updating of the
reward rate distribution; however, the assumption of change-
point non-stationarity still applies, and the predictive prior is
repeatedly mixed with the prior distribution. This leads the

estimated reward rate of an unchosen arm to evolve exponen-
tially toward the prior mean (see Methods). For both RW±
and DBM, we consider two decision policies: softmax and
ε-greedy (see Methods). Given two bandit arms, the essen-
tial difference between softmax and ε-greedy is that the for-
mer allocates choice probability between the two options de-
pending on how similar their estimated reward rates are (more
similar reward rates would lead to more similar choice prob-
abilities), while the latter only cares about which one has the
higher reward rate and chooses that with a fixed probability
1− ε (and the other option with probability ε).

Model Comparison
We first compare DBM and RW± in terms of how well they
capture human behavioral data. Note that DBM and RW±
both have two parameters: DBM – the stability parameter
and the prior mean; RW± – the positive and negative learn-
ing rates. Model parameters are estimated using maximum
likelihood estimation. We then compare the four models (2
learning models, 2 decision policies) via two methods: BIC
scores (lower the better) and predictive accuracy (higher the
better). Given the equal number of free parameters (resulting
in a constant offset for both learning models), differences in
BIC scores directly reflect differences in log likelihood of the
training data (Figure 1A). Once fitted, both softmax and ε-
greedy assign a predictive distribution over the options. The
predictive accuracy of a model is the probability that the sub-
ject and the model choose the same option, which can be ap-
proximated empirically as the likelihood the model assigns
to the subject’s chosen option averaged over trials. In other
words, BIC compares the average of the log likelihood the
models assign to subjects’ chosen options, while predictive
accuracy compares the average of the likelihood the models
assign to subjects’ chosen options.

We find that DBM accounts for subjects’ choice data better,
in comparison to RW±, both in terms of BIC (Figure 1A) and
predictive accuracy (Figure 1B), whether we use a softmax
decision policy or ε-greedy. Numerically, the BIC scores for
DBM and RW±, coupled with softmax, are 91.02 (s.e.m. =
4.70) and 99.06 (s.e.m. = 4.26), respectively (note that RW±
was shown in Lefebvre et al. (2017) to have lower BIC than
basic RW on the same data). The average BIC scores for
DBM and RW±, coupled with ε-greedy, are 95.00 (s.e.m. =
4.34) and 98.23 (s.e.m. = 4.15). The predictive accuracy for
DBM and RW±, coupled with softmax, are 72.97% (s.e.m. =
1.79% ) and 70.44% (s.e.m. = 1.72%). The predictive accu-
racy for DBM and RW±, coupled with ε-greedy, are 72.88%
(s.e.m. = 1.80%) and 71.48% (s.e.m. = 1.76%). The differ-
ence in predictive accuracy is significant (paired t-test: t(48)
= 5.52, p < 0.001 (softmax); t(48) = 2.66 (ε-greedy), p =
0.011).

At the individual level, more subjects are better fit by DBM
than RW± (Figure 1C). Concretely, DBM has better (lower)
BIC score than RW± for 40 out of 49 subjects (softmax) or 33
out of 49 subjects (ε-greedy); DBM also has better (higher)
predictive accuracy for 39 out of 49 subjects (softmax) or 33
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Figure 1: Model comparison. (A) BIC of DBM versus RW±, for both softmax and ε-greedy decision policies. Error bars:
s.e.m. of BIC having subtracted out BIC for DBM for each subject, thus error bar for DBM is 0. (B) Average predictive
accuracy of DBM versus RW±, for both softmax and ε-greedy decision policies. Chance predictive accuracy is 0.5. Error bars:
s.e.m. of individually subtractively normalized predictive accuracy, analogous to (A). (C) Predictive accuracy of DBM versus
RW± at the individual level.

out of 49 subjects (ε-greedy).
For this data set, there is no statistical difference in soft-

max and epsilon-greedy in their respective predictive accu-
racy in capturing human choice behavior (paired t-test, DBM:
p = 0.8, RW±: p = 0.1). Given this lack of difference, we
concentrate only on the softmax policy in the remainder of
the paper.

To get a better sense for how DBM better accounts for sub-
jects’ behavioral choices than RW±, we consider example
sequences of actual choices and outcomes for one example
subject, and see how the two models behave differently. We
denote the estimated reward rate of the left option as Qleft,
and the right option as Qright, then their difference drives
the choices (in the softmax decision policy). As Figure 2
shows, this particular subject has a strong tendency to stick
with one choice, whether in the unequal condition (75/25,
25/75) or in the neutral condition (75/75). The only way for
RW± to capture this behavior is to make the learning rate
very small (ε− = 0.04), such that the Q value stays at a some-
what favorable value in an asymptotically stable manner, as
long as the subject continues to exclusive prefer an option;
this also has the unfortunate consequence that the human-
preferred option is never assigned a very positive Q-value (for
this subject, the Q-value difference in RW± never exceeds
0.25 toward the more preferred option). DBM, on the other
hand, due to its action-based bias (devaluation of unchosen
options), is able to decouple the learning rate for reward es-
timation from a tendency to persistently favor an option. As
such, it allows the estimated reward rate to continue to in-
crease for the truly more rewarding option (the 75% option in
the 75/25 and 25/75 conditions), eventually assigning higher
likelihood (predictive accuracy) and log likelihood to the bet-
ter and persistently preferred option. One prediction based
on this observation is that, had the number of trials per game
(per pair) been larger, DBM would have gained even more
advantage over RW ± in capturing human choice behavior,
as it is later on in the game that DBM’s ability to assign in-

creasingly higher Q value to the better option becomes more
clearly advantageous. Another way of seeing why DBM has
higher predictive accuracy of human choice behavior is in
the noise parameter of the estimated decision policy. DBM
combined with softmax results in a higher inverse tempera-
ture parameter (greater predictive precision) than does RW±
(DBM: mean 17.07, s.e.m. = 2.19; RW±: mean 10.52, s.e.m.
= 1.43), indicating that subjects’ choices are more determinis-
tic (more accurately predicted) relative to DBM’s predictions
than RW±’s predictions.

Model Parameter Analysis
Given that previously it was found that subjects both underes-
timate reward rates of unseen arms in self-report and in fitted
prior mean (Guo & Yu, 2018), we also examine the fitted prior
mean in this data set. While the true prior mean of the reward
rates used in the experiment is 0.5, we find that the estimated
prior mean has a mean value of 0.19 across subjects (s.e.m. =
0.03) and is significantly lower than the true mean 0.5 (t-test:
t(48) = 7.71, p < 0.001). In other words, we replicate the pre-
vious finding that subjects significantly under-estimate prior
reward rate in the environment (Guo & Yu, 2018).

In addition, we find that the fitted stability parameter α is
on average 0.92 (s.e.m. = 0.023) across 49 subjects. It im-
plies that subjects behave as if they believe the reward rates
to change on average approximately once every 13 trials (ex-
pected interval between change points is 1/(1-α)). This fitted
α parameter is relatively high compared to previous bandit
tasks (Zhang & Yu, 2013; Guo & Yu, 2018), which typically
found α to be between 0.7 and 0.8. This may be because that
subjects in this task underwent substantial pre-training with
the same stimuli and statistics prior to the main experiment
(Lefebvre et al., 2017), unlike in previous studies.

Model Recovery
To assess model identifiability, we generate synthetic choices
and outcomes using DBM, and fit both DBM and RW± on
the simulated data. As expected, DBM has a lower BIC
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Figure 2: Evolution of differential Q-value (left - right) as a function of trials for an example subject (subject 24). Circles
indicate the subject’s actual choice (.5 = left, -.5 = right). More positive Q-value difference means greater model-predicted
probability of choosing left arm. Filled circles correspond to reward, and hollow circles correspond to no reward. Top left:
25/25%; Top right: 75/25%; Bottom left: 25/75%; Bottom right: 75/75%. The four pairs were randomly interleaved in their
presentation.

score on the data generated using DBM (DBM: mean =
55.84, RW±: mean = 109.13; paired t-test: t(48) = 7.1078,
p < 0.001). Moreover, when fitting RW± on the data gener-
ated by DBM, the positive learning rate is on average higher
than the negative learning rate (mean ε+ = 0.3392, mean
ε− = 0.1106, paired t-test: t(48) = 3.4208, p < 0.001). This
result indicates that if subjects truly behave like DBM (with
under-estimated prior reward rate), model fitting using RW±
would recover an asymmetry belief updating effect, as was
found in the original study (Lefebvre et al., 2017). Separately,
we also generate synthetic data from RW±, and find RW± to
have lower BIC (mean = 99.78) than DBM (mean = 123.00).

Methods
Data
We re-analyze data from Lefebvre et al. (2017) experiment 1.
50 healthy adult subjects (mean age = 27.1±1.3, 27 males)
were recruited to participate in a two-armed, real-valued out-
comes bandit task. Each chosen arm led to either a reward
(0.5e) or nothing (i.e. 0e). To model the reward as a
Bernoulli sample in DBM, we converted real-valued rewards
(i.e. 0e/0.5e) to binary values: (0/1 respectively). There
were 4 fixed pairs of arms (i.e. 4 conditions), with their re-

spective fixed reward rates: 25/25%, 25/75%, 75/25%, and
75/75%. Thus, it was a 2x2 design, varying both general
reward availability (high versus low) and asymmetry (equal
versus unequal). During the main experiment, each subject
was exposed to each pair (condition) 24 times in total, with
4 conditions interleaved – the order of all 96 trials were ran-
domized for each subject. No explicit information regarding
reward rates were given to the subjects. Subjects were in-
structed to earn as much money as possible, and they were
told some arms were more rewarding than others, but not how
much.

Model description
We consider two learning models, DBM (Yu & Cohen, 2009;
Zhang & Yu, 2013; Guo & Yu, 2018) and RW± (Lefebvre et
al., 2017), each coupled with two decision policies, softmax
and ε-greedy.

Let kn
i denote arm i in the nth condition, where 1≤ n≤ 4,

i ∈ {1,2}. Moreover, let θt
kn

i
denote the reward rate of arm

i in the nth condition at time t, with 1 ≤ t ≤ 96. For sim-
plicity, let kn

i ∈ {1,2, ...,8}, and kn
i = (n− 1) ∗ 2 + i (e.g.

first arm in condition 1 is 1, second arm in condition 2 is
2.etc). Furthermore, ∀t.1 ≤ t ≤ 96, let dt denote the deci-
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sion at time t, dt ∈ {1,2, ...,8}, and rt denote the reward out-
come at time t. For DBM, reward data were converted so that
rt ∈ {0,1} (see below). For RW±, rt ∈ {0,0.5}, consistent
with the exact monetary reward in the experiment design. Fi-
nally, let Dt denote the decision history up to time t, and Rt

the reward history up to time t. i.e. Dt = [d1,d2, ...,dt ] and
Rt = [r1,r2, ...,rt ].

Dynamic belief model (DBM) DBM assumes the rewards
are binary-valued (i.e. 1 = reward, 0 = no reward), following
a Bernoulli distribution for each arm. It also assumes the re-
ward rate of each arm to be non-stationary: at a given time
point, there is a 1−α probability that the reward rate of an
arm will be re-sampled from a prior distribution p0(θ), and α

probability remaining the same as the last encounter:

p(θt
kn

i
= θ|θt−1

kn
i
) = (1−α)p0(θ)+αδ(θt−1

kn
i
−θ) (1)

where δ(x) is the Dirac delta function.
For an arm kn

i , the predictive reward rate distribution is

p(θt
kn

i
|Rt−1,Dt−1) = (1−α)p0(θ)+αp(θt−1

kn
i
|Rt−1,Dt−1) .

(2)
For the chosen arm, the posterior distribution is updated ac-
cording to Bayes’ rule:

p(θt
kn

i
|Rt ,Dt) ∝ p(Rt |θt

kn
i
)p(θt

kn
i
|Rt−1,Dt−1), if dt = kn

i . (3)

For the unchosen arms (both the unchosen arm that is seen
and all the unavailable not seen), the posterior distributions
remain the same as the priors, but the predictive distribution
will be updated, leading the predictive mean to converge to-
ward the prior mean when an arm has not been chosen for a
long time.

Rescorla-Wagner± model (RW±) In contrast to a stan-
dard Rescorla-Wagner (RW) model, which has a single learn-
ing rate (e.g. ε), RW± has two (potentially) different learning
rates for positive and negative prediction errors respectively.
i.e. ε+ for positive prediction errors and ε− for negative pre-
diction errors. In other words,

θ̂
t
kn

i
= θ̂

t−1
kn

i
+

{
ε+(rt − θ̂

t−1
kn

i
), if rt − θ̂

t−1
kn

i
> 0

ε−(rt − θ̂
t−1
kn

i
), if rt − θ̂

t−1
kn

i
< 0

, (4)

where 0≤ ε+,ε− ≤ 1, and θ0
kn

i
= θ0 for all kn

i ’s. Note that only
the chosen arm’s estimated reward rate is updated according
to any new observation.

Softmax Decision Policy The probability (likelihood) of
choosing a particular arm kn

i at time t is given by

p(dt = kn
i ) =

e
bθ̂t

kn
i

e
bθ̂t

kn
1 + e

bθ̂t
kn
2

(5)

where b is the softmax inverse-temperature parameter.

ε-greedy Decision Policy The probability (likelihood) of
choosing a particular arm kn

i at time t is given by

p(dt = kn
i ) = (1− ε)∗1{θ̂t

kn
i
= max jθ̂

t
kn

j
}+ ε

K
(6)

where ε indicates the probability of exploration, and K is the
number of available arms in the current condition (in this
case, K = 2).

Model Fitting We fit the models by maximizing total log
likelihood, summed over trials, for each subject. We dis-
cretize the parameter space to find the setting yielding the
highest log likelihood. For DBM, we set the prior weight
(a+ b, where a and b are the parameters in the Beta prior
Beta(a,b)) (Zhang, Huang, & Yu, 2014), which is somewhat
informative but not too strong a prior bias. We set the initial
Q-values for RW± to be 0.5 as in the original paper (Lefebvre
et al., 2017): 0.5 is the true generative mean reward rate of all
the arms. We fit all other model parameters individually for
each subject.

Model Recovery We simulate data with best individually
fitted parameter for the two models (N=49) under the same
setting as the experiment. We simulate the same parame-
ter sets 9 times. The recovered prior mean (Pearson’s cor-
relation test: r = 0.8364, p < 0.001), α (Pearson’s correla-
tion: r = 0.6596, p < 0.001), and softmax parameter (Pear-
son’s correlation: r = 0.4704, p < 0.001) are all positively
and strongly correlated with true parameters.

Analysis of Side Bias We consider the possibility that some
subjects may exhibit significant side bias, especially since
two of the pairs have equal reward rates, and subjects had sub-
stantial pre-training with these same stimuli before the main
session and may have learned it does not matter which option
they choose. To examine a potential side bias, two versions
of decision models are compared: one with softmax decision
policy, and one with a mixed decision policy, which is a linear
combination of softmax and a categorical variable indicating
the presence of either a left or a right side bias. i.e.

p(dt = kn
i ) = βτ+(1−β)

e
θ̂t

kn
i
·b

eθ̂t
k1
·b
+ eθ̂t

k2
·b
, (7)

where β ∈ [0,1], τ ∈ {τl ,τr}. τl = 1 if the decision is made
with a left side bias and 0 otherwise; τr = 1 if there is a right
side bias and 0 otherwise. Note when β = 0, the above de-
cision policy is exactly softmax (no side bias). When β = 1,
it implies the decision is made only using a side bias and no
consideration of reward value at all. We use DBM to pre-
dict the estimated reward rate of each arm, and couple it with
the two decision policies (softmax and mixed) separately to
determine which model offers a better prediction of human
behavioral data.

We find there is only one subject (Subject 19 in the origi-
nal dataset) whose behavior is much better captured by DBM
with a left side bias than without, with a fitted β = 0.7 – that
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is, the subject chooses the left option 70% of the time without
learning. A post-hoc analysis reveals that this subject, regard-
less of the actual reward rates in each condition, quickly nar-
rowed down to the left option despite little or no information
about the reward rate of the right option in all conditions. The
data associated with this subject are consequently excluded
from all analyses.

There are 16 additional subjects in the dataset whose be-
havior is (slightly) better captured by DBM with the mixed
decision policy (τ = τl). However, all these subjects have a
fitted β less than 0.1, meaning the effect of (left) side bias is
relatively minimal. We choose to retain these subjects and
employ the pure softmax decision policy, as there any side
bias appears to have a small behavioral impact among these
subjects.

Discussion
In this work, we re-analyzed a two-armed bandit task data
set previously used to support asymmetric belief updating
(greater weight to “reward” than “no reward” outcomes)
(Lefebvre et al., 2017), which had been suggested to be a
mechanistic source of human optimism bias (Sharot, 2011).
We found that the behavioral choice data is actually better
accounted for by a Bayesian ideal observer model (DBM),
which (incorrectly) assumes environmental non-stationarity
(Yu & Cohen, 2009; Zhang & Yu, 2013; Guo & Yu, 2018),
and has been shown to capture human behavior in a broad
range of behavioral tasks (Yu & Cohen, 2009; Zhang & Yu,
2013; Yu & Huang, 2014; Ma & Yu, 2015; Guo & Yu,
2018). As was reported previously (Guo & Yu, 2018), us-
ing DBM, we also found in this data set that subjects increas-
ingly devalue unchosen options. It was previously suggested
(Lefebvre et al., 2017) that the striking persistence with which
human subjects repeatedly choose the same option, when the
two bandit options have equal reward rates, reflects a form
of optimism bias (biased estimate that the preferred option is
more rewarding). However, our work suggests an alternative
explanation, that the bias is not in terms of reward versus no
reward, but chosen option versus unchosen option. Because
the two are highly correlated in most bandit tasks, as sub-
jects are generally able to find and mostly choose the more
rewarding option, the two models make highly correlated pre-
dictions. This is reflected in the relatively small effect size
we found in terms of the improvement of DBM over RW± in
explaining human data. Future work is needed to identify ex-
perimental scenarios in which the two kinds of biases would
make more distinct predictions.

Separately, we were not able to distinguish two possible
types of ”forgetting”: whether to devalue only the 1 available
unchosen arm, or also the other 6 unavailable chosen arms,
on each trial. Answering this question may have implications
of the area of decision neuroscience known as counterfactual
learning. We reported data from the version of DBM that
mixes the posterior of all unchosen arms (7 out of 8 total
arms) with the prior distribution at each time step, regardless

of whether they are available to the subject or not. An alter-
native approach is to only update the one unchosen arm avail-
able at each time step while keeping reward rate estimations
for other unavailable arms constant. We also implemented the
alternate version, but did not find any significant statistical
difference between them on this data set (results not shown).
A larger future study, with more participants, more trials, and
more arms, would be helpful for clarifying this point.

Another limitation of this study is that the task only in-
volves two arms, which makes it hard to interpret the exact
rationale of subjects’ choice. For example, when they switch
from the left option to the right option, is it because they no
longer liked the left option or especially wanted to try the
right option? This question cannot be answered without at
least three arms. A related issue is that we found softmax
and ε-greedy to be statistically indistinguishable in explain-
ing choice behavior. With more arms, the two policies would
make more differentiated choices, and thus be more easily
teased apart.

An obvious question that arises from our work is why sub-
jects should assume non-stationarity by default and underes-
timate reward rate. As was previously argued (Yu & Cohen,
2009; Zhang & Yu, 2013), the assumption of non-stationarity
allows subjects to readily adapt to changing environments
outside this particular, synthetic experimental setting. On
the other hand, this non-stationary assumption tends to push
the decision maker to give up on previously good options too
quickly due to a chance bad outcome (Guo & Yu, 2018); de-
valuation of unchosen options (by under-estimating reward
rates in the prior) mitigates this tendency and improves over-
all performance in a fixed environment (Guo & Yu, 2019).
Thus, the current work suggests both a new rationale and
mechanism for a form of excessive optimism in humans: hu-
mans assume environmental non-stationarity by default to im-
prove adaptability, but this causes giving up on good options
too quickly in noisy stationary environments; excessive opti-
mism about the chosen option (maintained by devaluing un-
chosen options) discourages the decision maker from giving
up on good options too quickly.
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