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Abstract

A key challenge in language acquisition is learning morpho-
logical transforms relating word roots to derived forms. Tra-
ditional unsupervised algorithms find morphological patterns
in sequences of phonemes, but struggle to distinguish valid
segmentations from spurious ones because they ignore mean-
ing. For example, a system that correctly discovers ”add /z/”
as a valid morphological transform (song-songs, year-years)
might incorrectly infer that ”add /ah.t/” is also valid (mark-
market, spear-spirit). We propose that learners could avoid
these errors with a simple semantic assumption: morpholog-
ical transforms approximately preserve meaning. We extend
an algorithm from Chan and Yang (2008) by integrating prox-
imity in vector-space word embeddings as a criterion for valid
transforms. On a corpus of child-directed speech, we achieve
both higher accuracy and broader coverage than the purely
phonemic approach, even in more developmentally plausible
learning paradigms. Finally, we consider a deeper semantic
assumption that could guide the acquisition of more abstract,
human-like morphological understanding.
Keywords: language acquisition, morphology, development,
semantics.

Introduction
Relating word roots to derived forms poses a key challenge in
learning language and occurs in early years of development
(Berko, 1958). Our goal in this work is to build computa-
tional models of this process. We focus on algorithms that
learn morphological transforms from an unannotated vocabu-
lary. Most previous unsupervised models extract morphemes
only from patterns and statistics in word strings or phoneme
sequences. Approaches of this sort that are based on mini-
mum description length (e.g. Goldsmith, 2001) or Bayesian
principles (e.g. Frank, Goldwater, Griffiths, & Tenenbaum,
2010; Goldwater, Griffiths, & Johnson, 2009) produce strong
results, but fail to emulate children’s learning in several im-
portant ways.

First, these algorithms can struggle to distinguish valid seg-
mentations from spurious ones. For example, an algorithm
that learns the suffix /z/ from observing song, songs, year,
and years in the vocabulary, might also extract the coinciden-
tal suffix /ah.t/ from seeing mark, market, spear, and spirit.
This issue fundamentally comes from only considering su-
perficial patterns, rather than underlying meanings.

Another limitation is the gap between ideal statistical mod-
els (high resource learners) and cognitive plausibility for chil-
dren (low resource learners). Prior approaches have typi-
cally been built around complicated algorithms that learn over
many iterations, have high computational demands, and track
a large number of independent parameters. Some of these
previous models (e.g. Goldwater et al., 2009; Goldsmith,
2001) are explicitly intended as accounts of language de-
velopment at the computational level (in the sense of Marr

Figure 1: Pairs of morphologically related words appear nearby in
t-SNE reduced semantic space (left), while spurious pairs have less
consistently similar meanings (right).

(1982)), but our goal here is to move towards algorithmic
models of morphology induction that are cognitively plau-
sible. That is, we want not only to model learning in terms
of the problem being solved or the function being optimized,
but also to specify more of the cognitive mechanisms or pro-
cesses by which this learning might occur.

Our proposal builds on previous work by Chan and Yang
(2008) and Lignos, Chan, Yang, and Marcus (2010). Moti-
vated by evidence (Brown, 1973) that children may instead
learn morphological rules one at a time through on-line hy-
pothesis formation, Chan and Yang (2008) developed an al-
gorithm that iteratively extracts morphological transforms by
seeking pairs of suffixes with many stems in common. Lignos
et al. (2010) investigated the results of running this algo-
rithm on child-directed speech, aiming to bridge the gap be-
tween high-powered and developmental models of morphol-
ogy learning.

Their approach constitutes a significant step towards cogni-
tive plausibility in that the algorithm is simple, intuitive, and
yields a trajectory that better matches developmental data.
However, their algorithm still accepts some spurious mor-
phological transforms, and requires sufficiently high compu-
tational resources to track over 1000 possible transforms at
a time. Thus it neither fully bridges the gap nor escapes the
tendency to make mistaken generalizations.

Our contribution is to extend the Lignos et al. algorithm
in a way that responds to both of these issues. The key in-
sight is that children have access to linguistic and experien-
tial data beyond a simple vocabulary, since they hear words
used in context and have some sense of their meanings. To
help the learning model avoid spurious transforms, we extend
the purely phonemic algorithm with a simple semantic as-
sumption: valid morphological transforms should roughly
preserve meaning. More formally, we approximate mean-
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Figure 2: Overview of the algorithm. All wordpairs begin in the Unmodeled (U) set. A new transform is learned with each iteration, and the
word forms it connects are moved into the Base (B) and Derived (D) sets.

ing with distributional word embeddings, and we assume
that valid transforms should relate each base form to a de-
rived form that is sufficiently nearby in the embedding space.
We use vector representations generated by the GloVe algo-
rithm (Pennington, Socher, & Manning, 2014), trained on co-
occurrence statistics.

To get some intuition for why this assumption makes sense,
consult Figure 1. In both panels, we use t-SNE dimension-
ality reduction (Maaten & Hinton, 2008) to plot the 300-
dimensional GloVe vectors of 34 words. On the left, we see
17 pairs of words that are related by the valid suffix /z/, while
on the right we see 17 pairs related by the spurious suffix
/ah.t/. As expected, the valid transform relates semantically
similar wordpairs – e.g. the singular and plural forms of var-
ious nouns – while the spurious one seems uncorrelated with
semantic similarity.

In the rest of this paper, we first describe our algorithm in
detail and then present results addressing two central ques-
tions. Does incorporating semantic information help an un-
supervised algorithm learn morphology using ideal (high re-
source) settings? Do semantics support more developmen-
tally plausible (low resource) settings for the algorithm? We
close by discussing model limitations and proposing a deeper
semantic assumption that could help in the acquisition of
more abstract, human-like morphological understanding.

Methods
In this section we describe our model (which is largely sim-
ilar in structure to that of Lignos et al.), highlighting where
and how we incorporate semantic information. Our algorithm
takes as input a subset of the corpus of child-directed speech
from the CHILDES database (MacWhinney, 2000). Initially,
it extracts all the word types uttered by adult speakers, en-
codes them phonemically according to the CMU Pronouncing
Dictionary (Weide, 1998), and places them in the Unmodeled
set. On each iteration, the algorithm learns a single transform

of the form {s1, s2}, meaning “remove the suffix sequence s1
and add the suffix sequence s2.” For example, the transform
“remove the empty string $ and add /z/,” which is almost al-
ways learned first, would be written {$, z}. As the algorithm
iteratively discovers new morphological transforms, the Un-
modeled (U), Base (B) and Derived (D) sets are dynamically
updated to reflect the relationships learned between words.
The composition of these sets determine which transforms
can be learned in future iterations. A high-level overview of
this process is shown in Figure 2.

We now outline the steps (1-3) involved in one iteration of
the algorithm. Table 1 summarizes the parameters.

1. Hypothesize Transforms First, we extract all suffixal
phoneme sequences of length 0-4 from among the word types
in the Unmodeled set and rank them in frequency. Next, we
form candidate transforms {s1, s2} from all pairs of suffixes
s1 and s2 chosen from the N most frequent suffixes. For
each transform hypothesized thus, we list all the permitted
base/derived wordpairs that it explains. The parameter P de-
termines which sets (out of U, B, and D) the proposed base
and derived forms of a wordpair may come from. To illus-
trate, consider a scenario where N=3 and the most frequent
suffixal sequences are $, /z/, and /ih.ng/. In this case, the list
of (nontrivial) candidate transforms would be {$, z}, {z, $},
{$, ih.ng}, {ih.ng, $}, {z, ih.ng}, and {ih.ng, z}.

2. Select Transform The next step involves our central
modification of the Lignos et al. algorithm. Specifically,
for each base/derived wordpair, we evaluate the cosine dis-
tance between the GloVe representation of the base form and
the GloVe representation of the derived form. We filter out
hypotheses that are not sufficiently close in semantic space,
either at the level of entire transforms (L=Coarse) or at the
level of individual wordpairs within transforms (L=Fine). If
L=Coarse, we let ∆ for each hypothesized transform be the
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average of cosine distances δ across all of the permitted word-
pairs that the transform explains. We then discard transforms
with ∆ ≥ T. If L=Fine, we keep all transforms but discard
wordpairs with cosine distance δ≥ T.

In either case, we then discard transforms that don’t meet a
threshold of overlap ratio (as described in Lignos et al., 2010,
p. 5) and rank the remaining transforms according to the num-
ber of wordpairs that they explain, with ties broken by token
counts (Chan & Yang, 2008, p. 107). Finally, if the top candi-
date transform explains ≥W wordpairs, we add it to the list
of learned transforms. Otherwise, the algorithm terminates.

Continuing with the example introduced in step 1, sup-
pose our VC is the above paragraph. Then {$, z} and {z, $}
explain the wordpairs trans f orm→ trans f orms, explain→
explains, and trans f orms → trans f orm, explains →
explain, respectively. Since every word starts in U on the first
iteration, these wordpairs all follow the form U→U, and so
they are all permitted. The other candidate transforms explain
no wordpairs. Supposing that W ≤ 2, our algorithm would
learn {z, $}, since the base forms of {z, $} (trans f orms and
explains) appear more often than those of {$, z} (trans f orm
and explain).

3. Update Sets For each base/derived wordpair explained
by the newly learned transform, we move the derived form
to the Derived set and the base form to the Base set (unless
doing so would move it out of the Derived set).

Developmental Parameter Settings
The full parameter space shown in Table 1 spans a wide range
of learning paradigms. To study the algorithm at its best
(high resource), we set N=50 and EC=6B while exploring
all combinations of the other parameters (VC, T, L, W, and
P). Separately, we vary our developmental parameters (VC,
EC, and N) to better approximate a child-plausible (low re-
source) learner in a variety of ways (again, covering the space
of combinations of the other parameters).

• To model different levels of linguistic exposure, we vary
the corpus of word types, VC, between Brown+ (∼700K
tokens) and Full (∼7M tokens).

• Because children have limited understanding of word
meanings, we vary the size and source of the corpus on
which our GloVe vectors are trained, EC, as a proxy for
different levels of semantic experience. In addition to using
word vectors pretrained on 6B tokens from Wikipedia, we
train four of our own embeddings on smaller subsets of the
Wikipedia corpus to serve as more realistic co-occurrence
measures. We also train one embedding on child-directed
adult speech extracted from the CHILDES corpus for po-
tentially the most child-plausible semantic representations
of all these.

• Since children have limited memory and processing capac-
ity, and the algorithm hypothesizes N(N−1)/2 transforms
on each iteration, we explore performance with a range

Table 1: Summary of parameters (and abbreviations).

Parameter Range of values investigated Lignos’
Setting

Vocabulary
Corpus (VC)

Brown+ (CHILDES corpora
Adam, Eve, Sarah, Naomi, Peter,
Nina), Full (all NA-English
corpora)

Brown+

Embedding
Corpus (EC)

3M, 10M, 20M, 50M, 6B
(Wikipedia tokens), CHILDES
(all NA-English corpora)

–

Number of Top
Suffixes (N)

3, 5, 10, 15, 20, 50 50

Semantic
Threshold (T)

Values vary across different
combinations of EC and L:
10-20 values for each pair

–

Thresholding
Level (L)

Coarse (screened at the level of
transforms), Fine (screened at
the level of individual wordpairs)

–

Wordpair
Threshold (W)

3, 4 5

Permitted
Wordpairs (P)

Static (U→U, B→U, U→B),
Nonstatic (above and B→B,
D→U, U→D)

U→U,
B→U

of smaller values for N. Storing 3, or even 105 possibili-
ties (for N=3 and N=15, respectively) seems more devel-
opmentally plausible than storing 1225 possibilities (for
N=50).

Results
To evaluate the performance of our algorithm under one pa-
rameter setting, we determine how many valid transforms
it learns and count the rest as spurious. We hand-coded
transforms as valid if they connected at least three correct
base/derived wordpairs in a semantically consistent way, re-
gardless of what other, possibly spurious wordpairs they
also explained. For example, we count {t, s} as valid be-
cause it explains the wordpairs important → importance,
intelligent → intelligence, and patient → patience, even
though it also includes spurious wordpairs like print →
prince.

In Table 2, we compare the transforms found by Lignos et
al. with the results of our most successful or revealing pa-
rameter settings. We further devote one subsection each to
discussing our initial questions: First, we consider whether
integrating semantic information improves the performance
of an ideal (high resource) learner, and second, we investi-
gate the extent to which even very limited representations of
meaning could offset significant decreases in learners’ com-
putational power.

High Resource Learner
Figure 3 shows the results of running our modified algorithm
under conditions that are otherwise comparable to those of
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Figure 3: Summary of results for the ideal (high resource) learner
in terms of hits (valid transforms, y-axis) and false alarms (spuri-
ous transforms, x-axis). Each point represents one setting of the
algorithm’s parameters, and key parameter choices are highlighted
in point shape and color.

Lignos et al. We set two of our developmental parameters to
their highest resource values (EC=6B and N=50), then let T,
L, W, and P vary within each color to produce a distribution
of points. The points in the top left of the plot represent the
most successful runs because they maximize the number of
valid transforms found while minimizing the number of spu-
rious ones found. We see two overall trends.

First, our semantically informed algorithm markedly out-
performs Lignos et al. when acting as a high resource learner.
Where Lignos et al. find 17 valid and 3 spurious morpholog-
ical transforms, we find 24 valid and 0 spurious transforms
(see Table 2, Column H1) using the same Vocabulary Corpus
as they do (VC=Brown+). With a strictly larger Vocabulary
Corpus (VC=Full), our algorithm extracts 28 valid transforms
without finding a single spurious one (see H2). We also find
a set of parameter values that maximizes the number of valid
transforms learned (31) while still accepting no more than 2
spurious ones (see H3).

Second, we notice a fundamental performance tradeoff be-
tween coarse and fine thresholding. Applying a coarse thresh-
old allows us to find larger numbers of transforms, but usually
at the cost of admitting many spurious transforms. For some
learning goals this may be appropriate, but applying a fine
threshold often appears to be more reliable in that it enables
the algorithm to maximize valid transforms found while also
making no mistakes. We take this to suggest that fine thresh-
olding better models children’s learning, and return to that
point in the discussion.

Low Resource (Developmental) Learner
Each plot in Figure 4 shows the effects of varying one devel-
opmental parameter – Vocabulary Corpus, Embedding Cor-
pus, or Number of Top Suffixes – while keeping the other
two at their highest resource settings (VC=Full, EC=6B,
N=50). Compared to the high resource learner (pictured in
black throughout), overall performance declines as we lower

Table 2: Comparison of the transforms found by our algorithm to
those found in Lignos et al. Green boxes represent valid transforms
learned, while red boxes represent spurious transforms learned.

Lignos High Resource Low Resource

N = 50 50 50 50 15 15 3
VC = Brown+ Brown+ Full Full Full Full Brown+

L = – Coarse Fine Coarse Fine Fine Fine

(H1) (H2) (H3) (L1) (L2) (L3)

{$, z}
{$, ih.ng}
{$, s}
{$, iy}
{$, d}
{$, t}
{$, er}
{$, n}
{$, ah.n}
{$, ah.d}
{$, ah.l}
{$, l.iy}
{$, ah.z}
{$, ah.s}
{$, ah.n.t}
{ah.l, l.iy}
{t.iy, th}
{$, ih.z}
{$, th}
{$, ah.s.t}
{$, ah.b.ah.l}
{t, s}
{t, sh.ah.n}
{$, m.ah.n.t}
{d, t}
{d, ih.ng}
{d, z}
{$, f.ah.l}
{ah.n.d, $}
{$, t.iy}
{t, ih.ng}
{$, ih.d}
{s.ah.n, t.ah.d}
{$, ah.n.s}
{$, ey.sh.ah.n}
{$, ih.v}
{z, iy}
{z, er}
{er, ih.ng}
{er, s}
{er, z}
{er, d}

VALID 17 24 28 31 17 14 8

{t, iy}
{$, ah}
{$, ah.t}
{$, k}
{k, f}
{ow, ah.n}

SPURIOUS 3 0 0 2 2 0 0

1703



Figure 4: Trends in results for a low resource learner as a function of Vocabulary Corpus (left), Embedding Corpus (middle), or N (right), the
number of suffixes considered in forming candidate transforms. We let T, L, W, and P vary within each color.

resources in any of the three dimensions, though the curves
retain the same basic shape even as the values become more
child-plausible.

There are low resource parameter settings that match the
level of success achieved with no access to semantic infor-
mation. Learning only from child-directed speech (VC=Full
and EC=CHILDES) represents the setup closest to the lin-
guistic exposure and semantic experience of a young child.
Using these input corpora, our algorithm with N=15 can find
the same number of valid transforms (and one fewer spurious
transform) as Lignos et al. do with N=50 (see Table 2, Col-
umn L1). Our setting for N represents a much lower demand
on processing capacity and memory. With the same develop-
mental parameters, we also find a set of values for T, L, W,
and P that maximizes the number of valid transforms learned
(14) without admitting any spurious ones (see L2). Even us-
ing the lowest resource setting for each developmental pa-
rameter (VC=Brown+, EC=CHILDES, N=3), our algorithm
learns 8 of the most common valid transforms, including the
top 7 found by Lignos et al., without making any mistakes
(see L3).

Discussion
We see that incorporating semantic information into mod-
els of morphology learning enables high resource learners to
achieve greater coverage and accuracy over the space of mor-
phological transforms. Moreover, these models support de-
velopmental (low resource) learning that is both equally suc-
cessful to and more child-plausible than the purely phonemic
approach.

Our work is related to several recent proposals in the NLP
community which improve morphology learning by incorpo-
rating semantic information of some kind (e.g. Goldwater et
al., 2009; Soricut & Och, 2015). What distinguishes our work
is that we take a lower resource approach to the problem,
seeking to build a more developmentally plausible model,
both in terms of the training data and the computational ef-
ficiency of the algorithm. In contrast, the NLP approaches
might produce fuller or deeper analyses, but they also rely
on complex statistical calculations and large amounts of data
which may or may not be available to children.

Following Chan and Yang (2008) and Lignos et al. (2010),

we focus on learning suffixes, as they are the simplest and
earliest emerging forms of English morphology. But high-
powered NLP approaches are able to learn additional struc-
tures, including prefixes and other word components that chil-
dren eventually learn. It will be important in future work to
build developmentally plausible models of how children ac-
quire these aspects of language as well.

We chose to encode semantic information using vector em-
beddings trained on adult speech or text data, but one could
reasonably object that the linguistic knowledge encoded in a
Wikipedia corpus is inaccessible to children of the age that
our model is trying to capture. Even training vector embed-
dings on the CHILDES corpus as a whole has the potential to
confuse the linguistic experience of older children with that
of younger children. However, we used these corpora only to
approximate the large amount of linguistic input that children
get from their parents on a daily basis, whether through direct
interaction or indirect observation. A valuable step in future
work would be to explore ways of getting a closer and more
precise proxy for the linguistic exposure of differently aged
children.

One could also reasonably object to our use of vector em-
beddings in the first place, on the grounds that co-occurrence
statistics only scratch the surface of the rich representations
of meaning that even young children can access. However,
we are not committed to this choice as an account of how
children actually acquire and represent semantic knowledge.
Rather, as above, we use vector embeddings to supplement
the vocabulary list only as a proxy for children’s limited un-
derstanding of word meanings and any other general semantic
information conveyed through gesture or context. In the fu-
ture, it would be interesting to explore using richer semantic
representations that could also be learnable from the informa-
tion available to children.

Assessing Our Model As A Developmental Account

Since the motivation of our work was to propose an algorithm
for morphology acquisition that better matches the resources
available to children, it is especially instructive to compare
our results with empirical findings in language development.

Brown (1973) describes several basic inflectional mor-
phemes that emerge earliest in child language (between
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months 27 and 40): present progressive, present tense, noun
plural, and past tense. Even given minimal resources, our al-
gorithm finds phonological subtypes of each of these main
morphemes. For example, of the four forms that the noun
plural can take, we find the two most common, {$, z} and {$,
s}, at N=3. The other two, {$, ah.z} and {$, ih.z}, are found
only with larger values of N.

More generally, Brown’s empirical observations highlight
two important ways in which our model fails to capture the
richness of children’s morphological understanding. First,
rather than learn individual transforms that apply to specific,
known words, we ultimately want an algorithm that groups
base stems into broad types according to the suffixes they sup-
port.

An extension of our model should be able to learn, for in-
stance, that the stem lie belongs to the group defined by the
set of suffixes [$, z, d, ih.ng] because lie, lies, lied, and lying
are observed in the given vocabulary. The algorithm should
also recognize that plough belongs to this same group of base
stems because it shares certain key semantic properties with
them – in this case, that they’re all verbs. This would al-
low the learner to hypothesize that ploughs, ploughed, and
ploughing (in their phonetic forms) are simply words that it
hasn’t seen yet.

Further, such an algorithm would ideally group all non-
exceptional verbs together. Under our current phonemic ap-
proach, however, words like plough, state, and splice would
all belong to different groups (defined by [$, z, d, ih.ng], [$,
s, ih.d, ih.ng], and [$, ih.z, t, ih.ng], respectively). A more re-
alistic (and successful) model for developmental morphology
acquisition should recognize that these differences are super-
ficial and seek to learn the underlying semantic transforms
themselves, rather than their varied phonemic manifestations.

Model Extension: Semantic Transforms
Our current algorithm acquires morphology on the transform
level, but a more nuanced treatment would instead aim for a
token level understanding of segmentation.

We have already explored one step in this direction: Apply-
ing the semantic threshold at the level of wordpairs (L=Fine)
yields significantly purer transforms than applying it at the
level of transforms. For example, doing so allows our
model to learn valid patterns like important → importance,
intelligent → intelligence, and patient → patience while
also avoiding some spurious wordpairs like print→ prince.

Going forward, we intend to consider an extension of our
model along these lines that could help the algorithm refine
its results on the token level, and also has the potential to ad-
dress some of the developmental limitations discussed in the
previous section. We propose a stronger version of our orig-
inal semantic assumption: valid morphological transforms
should connect pairs of base and derived forms that are
offset in a consistent direction in semantic space.

To implement this idea, we first take all the wordpairs
within a single valid transform and find the GloVe differ-

Figure 5: Schematic of how agglomerative clustering on GloVe dif-
ference vectors in semantic space could allow the learner to identify
semantically based morphological transforms.

ence vector between the base and derived form of each word-
pair. We then perform agglomerative clustering on those
vectors. Since the spurious wordpairs aren’t offset by the
transform in a consistent semantic direction, this should
help us filter them out. For instance, the difference vec-
tors of important→ importance, intelligent→ intelligence,
and patient → patience might vaguely align, while that of
print → prince might point in a completely different direc-
tion.

This same approach could also help us separate seman-
tically distinct transforms that appear identical at the level
of phonemes. Agglomerative clustering of difference vec-
tors models how learners isolate semantically distinct sub-
transforms within a single phonemic transform, and then
identify groups of phonemically distinct sub-transforms that
together represent a single underlying semantic transform.

Figure 5 demonstrates how this idea would work in prin-
ciple with several wordpairs explained by the transforms {$,
z} and {$, s}. We hope that sleep→ sleeps and run→ runs,
as verbs, end up in the same cluster because their semantic
difference vectors point in similar directions, even though on
the superficial phonemic level, sleep→ sleeps seems more
similar to bird→ birds, since they are both explained by the
transform {$, s}.

Indeed, when we run an agglomerative clustering algo-
rithm on the GloVe difference vectors of all the wordpairs ex-
plained by {$, z} and {$, s} (as outputted by H3) and choose
a distance threshold that sorts them into three groups, the re-
sulting clusters correspond approximately to: nouns becom-
ing plural, verbs becoming 3rd person singular, and spurious
wordpairs.1 These results are visualized (again using t-SNE
dimensionality reduction) in Figure 6, where each point rep-
resents the difference vector of a base/derived wordpair. No-
tice that the verbs and nouns each form systematic clusters,
while the spurious wordpairs are spread seemingly at random.

In this case, we chose a distance threshold that yielded
three clusters in order to most clearly isolate the morpho-
logical structure that we hypothesized would be present in

1We use Ward’s minimum variance method for cluster analysis
and set the distance threshold at T=30.
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Figure 6: Visualization of how semantically coherent transforms
cluster in t-SNE reduced word embedding space. Each point cor-
responds to the difference vector between a base and derived form
connected by {$, z} or {$, s}.

and potentially extractable from this semantic space. It re-
mains an open question whether this threshold can be learned
or emerge automatically.

A future version of our morphology learning model could
incorporate such a clustering mechanism either as a post-
processing step to filter out spurious wordpairs, or integrated
into the algorithm itself to find the underlying semantic struc-
ture within and between morphological transforms.

Conclusion
Morphemes are the smallest chunks of language that have
meaning, so they are a natural place for structure and mean-
ing to come together. Here we investigated the interaction
between meaning and structure in a computational model of
language acquisition and showed that even relatively simple
forms of semantic representation substantially increase the
accuracy, coverage, and efficiency of our model. The ad-
vantage that incorporating semantic information provides in
learning morphological structure remains even in more devel-
opmentally plausible learning conditions.
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