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Abstract 

Smith (2015) describes an explosion of interest in Benford’s 
law, that for data from many domains the first digits have a log 
distribution. Few studies have similarly asked whether the 
numbers people generate fit to Benford’s law, but recent data 
show a reasonable fit. This paper argues that testing for fit to 
Benford’s law is the wrong question for behavioural data, 
instead we should think in terms of a “Benford bias” in which 
the first-digit distribution is distorted towards Benford’s law. 
We propose calculating the effect size of this bias by testing a 
linear contrast weighted by Benford’s law. Analyses of existing 
data sets yielded effect sizes of 0.43-0.52. Applying this 
approach to a new task extended the scope of Benford bias to 
predicting outputs of a linear system and found an effect size 
of .40. Benford bias may be a ubiquitous influence on 
judgments and decisions based on numbers. 
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Introduction 

  People frequently estimate numbers: How long is the Nile 

River? What is an item worth? How long will this project 

take? We use our knowledge to help us make such numerical 

estimates but often there is a gap between what we know and 

the precise number we must propose. How then do we 

generate estimates that are beyond the limitations of our 

knowledge? Benford’s law provides a possible window into 

this process and suggests the existence of a previously 

unrecognized bias in our estimates.    

Benford (1938) collected 20,229 data points from 22 

unrelated domains (e.g., length of rivers, newspaper 

circulation and physical constants). He found that the first 

digit of those numbers, independent of magnitude, had a log 

distribution, as shown in Table 1. This distribution has 

become known as Benford’s law. 

 

Table 1: Percentage frequency of each first digit from 

theory (Benford’s law) and observation (Benford, 1938). 

 1 2 3 4 5 6 7 8 9 
Benford’s 

law 

30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6 

Benford’s 

data 

30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 

 

 

In recent years there has been an explosion of interest in 

Benford’s law as a property of data with the publication of an 

edited book (Smith, 2015) and an online Benford’s law 

bibliography (http://www.benfordonline.net/) that has grown 

to contain more than 500 papers published in mathematics 

and statistics; 400 in Finance and Accounting; 130 in science 

and psychology; 90 in computer and digital science, 60 in 

politics and economics, and 15 in clinical or medical settings 

(estimated by Chi, 2020, in August 2019). Whereas these 

papers have shown that a lot of data about humans fit 

Benford’s law, whether the data people generate fits to 

Benford’s law has only been examined by a handful of 

studies. The early studies found no evidence of this pattern in 

human generated numbers which led to experts on numerical 

cognition, such as Dehaene (1997), to conclude that 

Benford’s law was not a psychological phenomenon. 

However, these studies had asked people to generate 

arbitrary, random numbers. When Diekmann (2007) and 

Burns & Krieger (2015) asked people to generate meaningful, 

nonarbitrary numbers then their first digits were a reasonably 

good fit to Benford’s law. They do not perfectly fit Benford’s 

law because no single phenomena could explain everything 

about number generation, but they suggest people can have a 

strong bias towards Benford’s law. Understanding the extent 

of this “Benford bias” and why it occurs can provide a 

window into how people estimate numbers and what errors 

they make, which would also improve its effectiveness as a 

tool of fraud detection.  

This paper will develop the idea of Benford bias and how 

we can estimate the size of it. It will then apply this analysis 

to a study extending Benford bias to a prediction task.  

Previous Research  

Mathematical research. The idea that first digits follow a 

log distribution was first proposed by Newcombe (1881) who 

noticed the wear pattern in tables of logarithms. Benford 

(1938) was the first to empirically confirm this speculation, 

although he did not name it Benford’s law himself. In its most 

general form Benford’s law describes the leading digit d (d ∈ 

{1, …, b − 1} ) in base b (b ≥ 2) as occurring with probability 

P(d)=logb(d + 1) − logbd = logb((d + 1)/d). For a base 10 

number system this gives the proportions in Table 1. 

Mathematicians have tried to derive Benford’s law from the 

general properties of numbers, but had limited success (see 

Raimi, 1976). Hill (1995) then proved an important result by 

deriving Benford’s law from the assumption that data that fits 

to it will be scale invariant. Furthermore, Hill (1998) argued 

that because a distribution seems to fit better the more it arises 

from completely unrelated data (e.g., baseball averages, areas 

of rivers); the critical point may be that the data is a 

combination of different distributions. Hill therefore 

proposed a theorem, “If distributions are selected at random 

(in any ‘unbiased’ way) and random samples are taken from 

each of these distributions, then the significant-digit 

frequencies of the combined sample will converge to 

Benford's distribution, even though the individual 

distributions selected may not closely follow the law.” (Hill, 
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1998, p. 361). Benford’s law has a tendency to attract 

informal attempts at explanation by people first encountering 

it, but these do not work. This led Berger & Hill (2011) to 

entitle their paper “Benford’s law strikes back: No simple 

explanation in sight for mathematical gem”. The current 

paper will not focus on the mathematics of Benford’s law, so 

the interested reader is directed to Berger & Hill (2015) for a 

good summary of its mathematics.  

Empirical research. Several attempts were made to test 

whether people generate numbers that conform to Benford’s 

law numbers. Hsü (1948) asked 1044 participants to “write a 

4-digit number that must be original, i.e., created in your own 

mind”. Kubovy (1977) found priming effects but no fit to 

Benford’s law when people generated random numbers. 

Later Hill (1988) asked mathematics students to generate a 6-

digit number “out of their heads” with similar results: There 

was no fit of first digits to Benford’s law. Thus, the consensus 

was that the numbers produced bear no relation to Benford’s 

law.  

That consensus held until Diekmann (2007) challenged it. 

He first showed that unstandardized regression coefficients 

reported in journals were a good fit to Benford’s law. He then 

asked students in sociology or economics to fabricate 

multiple four-digit “plausible values” of regression 

coefficients that would support a hypothesis, and found that 

the generated first-digits were a good fit to Benford’s law. 

However the samples were small (10 or 13 participants) and 

the pattern could be due to knowledge about regression 

coefficients (i.e. they tend to be low for data in social 

science).  

Burns & Krygier (2015) suggested that perhaps the critical 

difference between earlier studies and Diekmann (2007) was 

that the earlier studies had no meaningful context, instead 

they explicitly asked participants to produce arbitrary, 

random numbers. Burns & Krygier pointed out that there is 

some evidence for a bias towards small first digits in random 

number generation but the effects sizes are much smaller than 

Benford’s law would predict (for example, Loetscher & 

Brugger, 2007, aggregated across experiment using random 

generation of single digits and found a mean 0.02% increase 

over expected for digits 1, 2, and 3). To test this, Burns & 

Krygier asked students to estimate quantities for domains 

similar to those for which Benford collected data.  

In Burns & Krygier (2015) Study 1, a set of nine questions 

was given to 127 psychology students. The questions were 

selected so that one had a correct answer with each of the 

first-digits “1” through “9”. Thus, either correct or random 

answers would yield a flat distribution of first-digits. 

Participants were asked to “Please try to estimate the 

following values. Even if you have no idea, just guess.” 

Answers were recorded by a computer program that required 

them to enter a valid number for each question. The selected 

questions were as follows, with correct answers (not shown 

to subjects) in brackets: 

1. US gross national debt: $ [9] trillion 

2. The number 2 raised to the power of 33: [8,589,934,592] 

3. The peak summer electricity consumption of Melbourne: 

[7000] MV 

4. Atomic weight of zinc: [65.39] 

5. Population of the urban area of Philadelphia, USA: 

[5,330,000] 

6. Area drained by the Pearl (Xi Jiang) river: [437,000] 

km2      

7. Length of the Indus river: [3,180] km 

8. Daily circulation of UK newspaper The Daily Mail: 

[2,340,255] 

9. Infant mortality rate of Afghanistan: [157.43] deaths per 

1000 live births 

The first digits of each participant’s answers were extracted 

and the percentage of their nine answers using each digit was 

calculated. Figure 1 shows the mean percentages for each 

first-digit together with columns that represent Benford’s law 

and a line representing the correct answers.  

 

 
 

Figure 1: Distribution of first digits in Burns & Krygier 

(2015) Studies 1 and 2 data. The columns show Benford’s 

law and the straight line is the correct distribution. 

 

Figure 1 also shows the result of Burns & Krygier’s (2015) 

Study 2 which dealt with the possibility that the pattern of 

results from Study 1 was the result of some peculiarity of the 

specific questions asked. Participants were again presented 

with questions from nine different domains but now with nine 

different possible questions for each domain, each with a true 

answer starting with a different first digit. Each participant 

received nine of the possible 81 questions, selected so that 

each participant received one question from each domain and 

such that the correct answers started with each of the first 

digits 1-9. Figure 1 shows that the resulting distribution of 

first digits had almost the identical distribution to Study 1. 

Visually, the data in Figure 1 suggest that Benford’s law 

fits somewhat for numbers generated by people, but not 

perfectly. The pattern shown in Figure 1 was repeated in 

studies by Tripodi (2016) and Chi (2020), who consistently 

found the peak at Digit-5, though it varied in size. So, 

although human data somewhat approximates Benford’s law, 

it is not a perfect fit. This is not surprising; rather it would be 

a shock if the only influence on what numbers people 

generate was Benford’s law. Any particular set of questions 
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will have its own set of characteristics that may have an 

impact on fit to Benford’s law, and there may be other general 

heuristics that have an impact. For example, the peak at Digit-

5 may be due to people trying to estimate magnitudes when 

they don’t know the answer to a question, and then sometimes 

settling on a number halfway between two magnitudes.  

So perhaps rather than trying to test if people fit to 

Benford’s law, we should be trying to estimate the size of a 

“Benford bias” in the numbers produced. This Benford bias 

may represent a previously unrecognized bias in those 

numbers.  

Analysing the size of Benford bias 

  Many of the papers that claim to report data that fits to 

Benford’s law do so by using chi-square tests or z-tests and 

when such tests fail to reject the null hypothesis of fit, they 

conclude that their data’s distribution fits to Benford’s law. 

Problematically such analysis relies on drawing a conclusion 

based on failure to reject a null hypothesis. An alternative has 

been to use Bayesian analysis to measure the degree to which 

the hypothesis of fit is supported (Geyer & Williamson, 

2004). However, any test of the hypothesis that data fit to 

Benford’s law suffers from the fact that it is almost certainly 

untrue because any specific data set will have characteristics 

or influences other than that which produces Benford’s law. 

Benford (1938) recognized this when he labelled what he had 

discovered “the law of anomalous data” from his observation 

that the best fit to Benford’s law was the aggregation across 

all his data sets. Aggregation makes the signal of Benford’s 

law stand out most clearly from the noise of individual data 

sets’ characteristics.  So there is something of a paradox in 

testing fit to Benford’s law in that evidence for it should be 

strongest when aggerating across a large set of diverse data, 

but Benford’s law is most interesting when it is tested for 

specific data sets. 

A better question to ask than whether the data support the 

hypothesis of fit to Benford’s law may instead be how much 

of the variance in the data is explained by Benford’s law? 

This question can be addressed by calculating the effect size 

(η2) for the linear contrast weighted by Benford’s law for the 

proportions of digits 1 through 9 produced by participants. A 

difficulty posed by such an analysis is that given that 

participants produce only nine data points no single 

participant can closely approximate Benford’s law, so it 

would impossible for such a contrast to explain all the 

variances. Simulations of samples of 300 participants found 

that the maximum η2 for such data is approximately η2=0.73. 

Applying this analysis to Burns & Krygier (2015) Study 1 

found that for the weighted-linear contrast, F(1,126)=137.17, 

p < .001, η2=.521 and for Study 2, F(1,289)=215.72, p < .001, 

η2=.427. Analysis of Tripodi’s (2016) nonarbitary data 

found, F(1,381)=335.06, p < .001, η2=.468. The η2 statistic 

represents the proportion of variance accounted for by the 

contrast, therefore higher values for the proposed contrast are 

evidence of a stronger Benford bias. 

Thus, analyzing the effect sizes for the weighted-linear 

contrast yielded reasonably consistent results indicated a 

moderate to large effect size, especially in the context that 

0.73 was the maximum possible. Therefore, such analysis 

appears to be useful tool for gauging the size of Benford bias. 

Note that although it is novel to use contrast effect sizes to 

examine Benford’s law, there is nothing statistical novel 

about this. Contrasts are simply being applied to means that 

happen to be predicted by a distribution, they are not testing 

the distribution in any other way. 

Extending Benford Bias to Prediction 

In Burns & Krygier (2015) participants were given 

knowledge questions, which leads to the question of whether 

the evidence for Benford bias is restricted to such questions. 

If this was the case, then it would be hard to argue that it is 

telling us anything about judgement or numerical cognition. 

A situation in which the numbers we generate can have 

important impacts on judgement are when we need to make 

predictions, so this paper will extend the investigation of 

Benford bias to a prediction task. 

The prediction task chosen was the type of complex 

problem solving task used by Vollmeyer, Burns & Holyoak 

(1996) in which participants could manipulate the inputs to a 

linear system and then observe the outputs in order to learn 

over a series of trials how to control the system. Participants 

were shown a computer display listing what the current 

output values were, and they could enter new values for each 

of the inputs. Once this was done the computer would display 

the new outputs as well as the history of previous 

manipulations. However, before participants see the result of 

the changes to the inputs it is possible to ask them to predict 

the outputs. One of the key reasons researchers have used this 

task is that it generates metrics for how people go about 

learning about the system by observing the way they 

manipulated the inputs; however, this is a limitation when 

using it to observe predictions. The best learning strategy is 

to change one input at a time by small amounts, which can 

leave multiple outputs unchanged and the ones that do change 

may be only changed by an amount that does not change the 

first digit. It also means that first digit of outputs will be 

heavily influenced by the first digit of the initial values of the 

outputs, and therefore the first digits of predictions will be 

biased.  

To overcome these limitations instead of participants 

choosing the inputs they were presented with inputs, each one 

of which was changed on every trial. Therefore, participants 

observed every output change on every trial, and sets of 

inputs were created that led participants to observe outputs 

that started equally often with each first digit. 

It was predicted that the distribution of participants’ first 

digits should be similar to that shown in Figure 1, and that 

analyzing weighted contrasts should produce at least 

moderate effect sizes. 

All previous studies of the psychology of Benford’s law 

have used samples drawn from university undergraduates, 

which raises the question of how universal is Benford bias? 

So, in this study participants were recruited using Amazon’s 

Mechanical Turk. Amazon originally created this so that 
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people could request and pay workers to complete online 

tasks. It has become extensively used for conducting online 

behavioral experiments and research suggest that it allows 

recruitment of a more diverse sample than university 

undergraduates and can produce results of similar reliability 

(Buhrmester, Kwang, & Gosling, 2011).  

Method 

Participants 

  A total of 317 participants were recruited via mechanical 

Turk. The only recruitment restriction was that they be from 

the USA. This was chosen so that the sample would be 

English speaking, and this was the cheapest way to achieve 

this (Mechanical Turk can charge for recruitment 

restrictions). Mechanical Turk should enforce this restriction, 

but when asked what country they were in 6 participants 

indicated that they were outside the USA. Although we did 

not deliberately try to collect information on participants’ 

actual location, because our program time stamped every 

event with the time on the participant’s computer, we were 

able to observe that some machines were using time zones 

outside the USA. There were 35 participants whose 

computers indicated a time zone outside of the USA, the 18 

with an Indian time zone being the largest single group.  

It was decided not to eliminate any participants from the 

sample based on location information. Time zone settings are 

not an absolutely reliable indicator of location, and setting the 

restriction to the USA was for convenience rather than being 

critical to the experiment. It is slightly worrying though that 

about 9% of participants may have inaccurately answered a 

direct question.  

In response to demographic questions, 60% indicated that 

they were male, and 91% indicated that their first language 

was English. Their age range was 18-92 with a mean of 31.7 

years and standard deviation of 8.5. In terms of education, 

171 indicated that they had a bachelor’s degree and a further 

78 had an advanced degree. Thirty-nine indicated that they 

had some college but no degree at this time, leaving only 20 

participants with only a high school level education. So, in 

terms of education the Mechanical Turk sample was not too 

different from a university sample, but their age spread was 

much greater. 

Materials 

Linear systems. In Vollmeyer et al (1996) participants 

learnt about a single system with three inputs and three 

outputs over three or four rounds, with each round containing 

6 trials. Each trial was a chance to change the inputs and 

observe the resulting outputs. Such conditions enabled many 

participants to gain at least partial knowledge of the system. 

However, in the current study it was better if participants 

didn’t learn the system, so that their predictions were not 

biased too much by the correct answer. It was also better to 

have multiple systems so that predictions were less likely to 

be biased by the characteristics of a particular system. So, 

each participant received three systems but only four trials for 

each. Thus, each participant made a total of 36 predictions 

after starting with all outputs set to zero. 

Randomly, the frequency of first digits would be expected 

to come out to be unequal, and it is possible that observing 

such unequal frequencies could influence people’s 

predictions. Therefore, once the values for the weights on the 

links between inputs and outputs were decided, the inputs 

were selected systematically. This selection was constrained 

so that across the first three trials for each system with a total 

of nine outputs, the first-digits 1-9 each appeared once. 

Therefore, participants observed each first digit value equally 

often. Furthermore, across the three systems, in each trial the 

first-digits 1-9 each appeared once. Thus, across trials there 

was no bias towards seeing any digits more often earlier in 

the task. The order of presentation of the three systems was 

also controlled such that each of the six possible orders 

occurred equally often. 

Creating sets of 27 inputs that would produce outputs with 

these constraints would be hard by hand, so appropriate sets 

of inputs were created by simulation. For each simulation the 

27 inputs were randomly selected and if the resulting outputs 

did not fit the constraints then a new set of inputs was 

generated. Fortunately, the code to do this is simple and 

desktop computers can generate billions of such simulations 

in an hour. 

Four sets of inputs were generated by simulation, but 

another aspect of them was varied. For two sets the range 

from which random inputs were chosen was 1-100 each time, 

but for two sets the range for inputs accelerated from 1-10 on 

Trial 1, to 1-100 on Trial 2, then 1-1000 for Trial 3. By 

accelerating the inputs range it was more likely that an output 

would increase in magnitude from one trial to the next. 

Therefore, by testing for an effect of input set the design 

allowed us to test the effect on Benford bias of increasing 

uncertainty regarding magnitudes. The sets which more often 

led to an increase in magnitude should have stronger Benford 

bias.   

The inputs for the first three trial for each system were 

determined for each of the systems but it was decided to 

provide participants with a fourth trial for each system. This 

reduced the chance that participants might notice a pattern 

that the first digits were being presented equally often, and 

reduced a concern that participants might not pay as much 

notice to the outputs of the last trial they were given. In 

addition, it generated more data from each participant. The 

inputs for the fourth trials were randomly generated for each 

participant using the input range used on the third trial.  

Catch page. A risk for any online study is that participants 

may not be able to understand the instructions given or may 

not be motivated enough to try to understand. One way of 

mitigating this risk is to include “catch pages” in which it is 

only possible to responding correctly if the text on the page 

is read and understood. Often such pages contain a large 

amount of text in order to catch out participants who might 

skip lengthy instructions.  

A catch page was designed for this study which instructed 

participants that they were being paid for 15 minutes so they 
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should try to go through the experiment briskly and not pull 

out a calculator to try to find precise answers. We wanted 

their best guess at predicting what would happen. Due to the 

difficulty of the task a participant could take a long time, so 

the instructions were intended to give participants permission 

to not have to get things right. To make sure that participants 

read these instructions the end of the instructions told 

participants to click on the title at the top of the page rather 

than the prominent button below the text. Participants who 

clicked on the button saw a message telling them to read the 

page carefully before proceeding. If they clicked on the 

button again then they saw this message again with a count 

of how often they had acted incorrectly. Participants could 

not advance in the experiment until they had clicked on the 

title of the page. 

Procedure 

All participants completed the experiment online at a time 

of their choosing. The experiment was presented as a set of 

webpages controlled by javascript through any standard web 

browser. They were first given demographic questions 

regarding gender, age, first language and highest education 

level. They then read the instructions and the catch page. 

Participants then gave predictions for each of the three linear 

systems, as described above.  The three systems could be 

presented in six different possible orders and each order was 

used equally often.  

Participants took about 15 minutes to complete the task, but 

it varied because no aspect of the experiment was time 

limited. Participants who completed the experiment were 

paid US$2. 

Results 

Catch page 

The majority of participants either never clicked on the 

incorrect button on the catch page (35.8%) or did so only 

once (32.3%). A further 12.3% clicked twice and 12.9% 

between three and eight times. A total of 5.2% clicked 

between twelve and sixty-nine times, while a further four 

participants clicked more than 100 times. One of these was 

recorded as clicking 6914 times which would only be 

possible if they ran some sort of computer script. Failing to 

read the instruction correctly 10 or more times seems a 

reasonable criterion for distrusting a participant’s data, so 

participants who did this were eliminated for the sample. This 

reduced the sample to 289 participants. 

A total of 160 participants started the task without 

completing it. Of these the most common point to stop was 

on the catch page, a total of 63. Perhaps because they lacked 

the motivation or the language skills to get past this page.  

Across the four trials for the three systems the participants 

generated 36 predictions. The first digits for these predictions 

were counted and frequencies for digits 1 to 9 converted into 

proportions of total digits (0 could be a legitimate prediction, 

especially in the first trial, so such responses were ignored for 

the purpose of calculating proportions). Figure 2 shows the 

proportions for these digits.   

First digit distribution 

 
Figure 2: Mean proportions of first digits for prediction 

with 95% confidence intervals. Benford’s law proportions 

are in columns. The correct distribution for the answers 

would be a straight line across the graph at 11.1%.  

 

   

Figure 2 shows a similar pattern to Figure 1 except that 

Digit-1 and Digit-5 are a little lower.  These are the only 

digits whose mean frequencies’ 95% confidence intervals do 

not encompass Benford’s law.  

A 4x9 mixed design analysis of variance was run with a 

linear contrast weighted by the digit proportions for 

Benford’s law. The between factor was input set (4 different 

sets) and the within factor the nine first digit proportions. The 

contrast was statistically significant, F(1,285) = 190.4, p < 

.001 with effect size η2 = .400. The contrast did not interact 

with input set, F(3,285) = 0.56, p = .645, η2 = .004. The lack 

of any effect inputs set suggests that the frequency with 

which outputs changed magnitudes was not critical. 

Discussion 

The title of this paper asked a question, do people fit to 

Benford’s law or do they have a Benford bias? It was phrased 

this way because papers about Benford’s law usually pose the 

question simply as whether the data set fit Benford’s law, 

however this paper argues that a better way to pose the 

question for human behavior is to look for the degree of 

Benford bias. Whether people generate data that fits to 

Benford’s law has a muddy answer, but if the question is 

whether their data shows evidence of a Benford bias then the 

empirical evidence strongly answers in the affirmative. The 

current experiment extended the scope of Benford bias by 

finding for a prediction task a similar pattern for first digits 

as found by Burns & Krygier (2015). Although the peak for 

Digit-5 was lower than in the previous studies, Digit-5 was 

the only digit for which its mean proportion exceeded that 

predicted by Benford’s law by more than the 95% confidence 
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interval. It also found a similar effect size for the Benford-

weighted contrast (0.40). The pattern found here and in 

Tripodi (2016) and Chi (2020) has been consistent: Digit-1 is 

most common and then there is a monotonic decline in 

frequencies to Digit-4, then an upward spike for Digit-5,  

followed by a decline for Digit-6 and then Digits 7-9 have the 

lowest (though similar) frequencies. The current study also 

extended this finding to a new population, online Mechanical 

Turk workers.   

This paper represents a conceptual and analytic advance 

over the previous behavioral studies of Benford’s law. Both 

the studies that failed to find evidence for Benford’s law 

when they asked people to generate random numbers and the 

more recent studies that found evidence when people 

generate nonarbitrary numbers, focused on testing the 

hypothesis that people exactly fit to Benford’s law. The 

current paper argues that this hypothesis is not supported by 

the data and that conceptually it is the wrong hypothesis to 

test because it implies a too reductive view of the process of 

generating numbers. Instead we should be thinking in terms 

of a Benford bias, meaning that like any heuristic or bias there 

is a distortion of the data towards the bias, but the bias rarely 

completely determines the data. Such a view seems consistent 

with the behavioral data and brings the conceptualization of 

how to understand the relationship between Benford’s law 

and human behavior more in line with how heuristics and bias 

affect judgement in the framework of Tversky & Kahneman 

(1974).  

Evidence of systematic effects other than Benford bias on 

generation of this data is suggested by the consistent peak at 

Digit-5. Such a peak was also found by Scott, Barnard & May 

(2001) who had people provide numbers under various 

constraints in order to test hypotheses about executive 

function. However, they found that the peak at Digit-5 was 

present in unelaborated numbers (those consisting of one 

nonzero digit followed by zeros) rather than elaborated ones 

(those with more than one nonzero digit followed by zero). 

They interpreted elaboration as indicating greater 

involvement of executive functions. Burns & Krygier (2015) 

saw a similar reduction in the Digit-5 peak for elaborated 

numbers. Therefore, as suggested already, the Digit-5 peak 

could be due to some sort of heuristic that would decrease the 

extent to which Benford’s bias explains the data. 

If there is a Benford bias, then the question is how do we 

measure its size? An important innovation of this paper is to 

propose that this can be done by calculating the effect size of 

a linear contrast weighted by the proportions proposed by 

Benford’s law. This approach was applied to the data from 

Burns & Krygier (2015) and then successfully applied to a 

new data set. Therefore, it appears to be a useful analytic tool 

for asking new questions about Benford’s law and human 

behavior. 

Note that the claim is not that the weighted linear contrast 

is the only possible description of the first digit data, or even 

necessarily the best. For example, an unweighted linear 

contrast would also yield a substantial effect size for the data 

in Figure 2. The weighted linear contrast is useful because it 

allows a focused question to be asked: to what extend does 

the Benford’s law pattern explain people’s first digit data?  

There has been so little research on the psychology of 

Benford’s law that there are many open questions for new 

research to address. We now have the conceptual and analytic 

tools to explore this topic and doing so is important for the 

following reasons.  

First, Benford’s law has practical consequences because fit 

to it is being used as a way of detecting fraud, first in financial 

data but more recently in many types of data (Nigrini, 2015). 

Using it as a tool relies on the assumption that deviation from 

it in data can be evidence that a human hand has distorted the 

data. However, such tests would benefit from a good model 

of human generated data. A better understanding of what the 

first digits of human generated data looks like would allow 

the development of more sensitive tests of fraud and fewer 

false positives. For example, our tests of Benford bias suggest 

that elevation of Digit-5 in data may be a particularly strong 

indicator of fraud. 

A second reason for exploring Benford bias is that it may 

be distorting human judgment in ways that have not been 

recognized before. In particular, by extending Benford bias 

to prediction, the current study opens up the possibility that 

the many decision we make based on predictions may be 

being distorted. How much of an impact Benford bias has on 

decision making will depend on how robust its effects are. In 

particular, determining how knowledge mediates Benford 

bias is an important target for future research.  

This paper has not proposed a model of why people’s data 

shows Benford bias. The goal of this paper and of Burns & 

Krygier (2015) has been to establish empirically that Benford 

bias is a real and reliable behavioral phenomenon. This is not 

an uncommon approach in research into decision making 

biases, for example, the anchoring bias was established as an 

empirical phenomenon for number generation (Tversky & 

Khaneman, 1974) long before the multiple cognitive 

mechanism for it were understood (see Epley, 2004). Strong 

and consistent regularities in human behavior can be 

illuminating, but under-constrained attempts to explain them 

before there is an understanding of the nature of the empirical 

phenomenon can lead to a lot of wasted research effort. The 

current research  

So, a final reason for examining Benford bias is that it is a 

surprising finding about human behavior. Like any surprising 

consistency in human behavior, understanding it potentially 

offers a unique window into the processes of cognition. We 

believe that it is now has a solid enough empirical basis that 

understanding why Benford bias exists is now an important 

question for future research.  
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