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Abstract  
When humans revise their assumptions based on evidence, they 
process information on the (un)certainties of the situation. This 
process can be modeled by a (mathematically optimal) Bayes-
ian reasoning strategy. Humans typically deviate from this 
norm and apply heuristic strategies, often by only partially pro-
cessing the available information (e.g., neglecting base rates). 
From a perspective of ecological rationality, such heuristics 
possibly constitute viable cognitive strategies in certain situa-
tions. We investigate the adequacy of a cognitively plausible 
heuristic strategy, which amounts to approximately averaging 
the probability information on prior hypotheses and evidence. 
We compare this strategy to optimal Bayesian reasoning and to 
information-neglecting strategies by exploring the situational 
parameter space (number of hypotheses, prior and likelihood 
values). Finally, we frame this in the context of teachers’ diag-
nostic judgments on students’ potential misconceptions (pri-
ors) based on students’ solutions (evidence) and interpret the 
resulting accuracy of decisions within the ecology of informal 
student assessment. 

Keywords: Bayesian reasoning; averaging-prior-and-evidence 
strategy; diagnostic judgments; ecological rationality 

Introduction 
When inferences in situations with uncertainty are modeled 
by probability theory, the mathematically optimal strategy for 
revising assumptions after processing new evidence can be 
described as Bayesian reasoning. Within this approach, the 
plausibility of competing assumptions is described by prior 
probabilities of hypotheses 𝑃(𝐻!), the conditional probabili-
ties of evidence by likelihoods of evidence 𝑃(𝐸|𝐻!), and the 
revised assumptions by posterior probabilities of hypotheses 
𝑃(𝐻!|𝐸), according to the Bayes rule: 

𝑃(𝐻!|𝐸) ∝ 𝑃(𝐻!) ∙ 𝑃(𝐸|𝐻!)   (Bayesian update, BUS)  (1) 

Bayesian update (cf. fig. 1) is a general normative model 
of decision-making (Mandel, 2014). It has often been applied 
to judgments in medical situations (base rates of illnesses, 
sensitivity and specificity of tests, e.g., Gigerenzer & 
Hoffrage, 1995), and even to model teacher judgments in ed-
ucational situations (Loibl & Leuders, 2020). 

Research has demonstrated that humans’ capacity to pro-
cess information on probabilities in Bayesian reasoning is 
limited which results in sub-optimal heuristics, such as base-

rate neglect (e.g., Kahneman & Tversky, 1996). While often 
such biased strategies are interpreted as a limitation of human 
thinking in probabilities (Kahneman & Tversky, 1996), one 
could also ask whether mathematically suboptimal heuristics 
may be regarded as adequate and effective reasoning strate-
gies in certain situations (ecological rationality: Simon, 1955; 
Gigerenzer & Hoffrage, 1995). For instance, Sundh (2019) 
showed that for calculations with joint probabilities an aver-
aging heuristic was adequate in certain constellations. Similar 
questions of ecological rationality of heuristics have been in-
vestigated with respect to multiple-cue situations using strat-
egies like take-the-best or fast-and-frugal trees (Gigerenzer 
& Goldstein, 1996; Martignon, Vitouch, Takezawa, & For-
ster, 2003).  

In our study, we focus on a situation that has not been stud-
ied in the light of ecological rationality before: Single-cue 
judgments on multiple (2 or 3) hypotheses with complete but 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The diagram illustrates the updating of the 
probability of two mutually exclusive hypotheses 𝐻!. 
Given the base rates of the hypotheses 𝑃(𝐻!) and the 
likelihoods of the evidence 𝑃(𝐸|𝐻!), the prior proba-
bility 𝑃(𝐻") = 20% increases to the posterior proba-
bility 𝑃(𝐻"|𝐸) ≈ 45% after evidence E is observed, 
according to the Bayes rule: 

 𝑃(𝐻"|𝐸) =
#$%	∙	"$%

($%	∙	)$%	*	#$%	∙	"$%
≈ "$%

+,%
≈ 45%  

(ratio of right dashed area to total dashed area) 
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noisy probability information (priors and likelihoods). The 
noisy estimates of the probabilities (cf. Sundh, 2019) make 
exact calculations unfeasible. From a cognitive perspective, 
it seems plausible that humans’ mental models of their intui-
tive estimates on probabilities in real world decisions are an-
alog non-numerical representations (Khemlani, Lotstein, & 
Johnson-Laird, 2015). Khemlani et al. proposed a computa-
tional model assuming primitive analog representations for 
noisy probabilities and implemented intuitive strategies on 
processing these non-numerical probabilities in the model. 
Juslin, Nilsson, & Winman (2009) modeled complex types of 
reasoning with noisy probabilities (including Bayesian updat-
ing, see below). Both computational models were validated 
with human data. 

Against this background, we propose a cognitively plausi-
ble heuristic strategy (simpler than Juslin et al., 2009), which 
amounts to approximately averaging the probability infor-
mation on prior hypotheses and evidence (APES). We ex-
plore the accuracy and ecological rationality of APES for 
Bayesian reasoning in analog non-numerical settings. In two 
computational studies, we analyze the relative accuracy of 
decisions based on APES in a two- and a three-hypotheses 
situation. Finally, we discuss the scope and ecological ration-
ality of APES by framing it in the context of teacher judge-
ments. 

 

State of Research on Heuristics  
in Bayesian Reasoning 

As outlined above, Bayesian reasoning (for single cues) re-
quires the combination of multiple probabilities in a multipli-
cative way (e.g., 90% ‧ 20%). However, multiplying proba-
bilities is not intuitive (e.g., 90% of 20%) and therefore it is 
cognitively demanding (Sundh, 2019). Unsurprisingly, re-
search shows that humans often fail to apply the Bayes rule 
correctly, even when strongly supported (Gigerenzer & 
Hoffrage, 1995; Weber, Binder, & Kraus, 2018). More spe-
cifically, research has identified often-applied heuristics that 
lead to biased decisions (e.g., base-rate neglect, Kahneman & 
Tversky, 1996).  

In a systematic analysis on the types of update strategies in 
the context of numerical Bayes reasoning tasks, Cohen and 
Staub (2015) showed that most participants’ strategies 
amount to not making use of all sources of information: Most 
participants estimated the posterior probability based on only 
one of the multiple provided probabilities or by computing a 
weighted sum of several, but not all probabilities. In their 
study, most participants only processed the evidence (evi-
dence-only strategy, EOS, cf. Zhu & Gigerenzer, 2006; with 
variations called representative thinking: Zhu & Gigerenzer, 
2006; Fisherian: Gigerenzer & Hoffrage, 1995; inverse fal-
lacy, Villejoubert & Mandel, 2002; likelihood subtraction: 
Gigerenzer & Hoffrage, 1995). Other participants only took 
the prior probabilities (priors only, POS, cf. base rate only: 
Gigerenzer & Hoffrage, 1995; also called conservatism: Ed-
wards, 1968; Zhu & Gigerenzer, 2006).  

𝑃(𝐻!|𝐸) ∝ 𝑃(𝐸|𝐻!)     (Evidence only, EOS)  (2) 
𝑃(𝐻!|𝐸) ∝ 𝑃(𝐻!)         (Prior only, POS) (3) 

The reasoning strategies related to (2) and (3) are charac-
terized by the disregard of information and therefore they are 
cognitively simpler to perform than BUS (1). Strategies, 
which combine information additively are discussed in sev-
eral contexts, such as joint probabilities (Sundh, 2019), con-
junctive probabilities (Juslin, Lindskog, & Mayerhofer, 
2015), and Bayesian reasoning (Cohen & Staub, 2015; Juslin 
et al., 2009; Lopes, 1985; Shanteau, 1975). Additive strate-
gies combine all probability information and can approxi-
mate multiplicative strategies in some situations. These strat-
egies assume that the individual determine posteriors by a 
complex weighted sum of all probabilities (e.g., Cohen & 
Staub, 2015; Juslin et al., 2009):  

𝑃(𝐻!|𝐸) = 𝛼 ∙ 𝑃(𝐻!) + 𝛽 ∙ 𝑃(𝐸|𝐻!) + 𝛾 ∙ 𝑃(𝐸|¬𝐻!) (4) 

It appears rather implausible that such a complex set of in-
formation on probabilities and regression weights can be pro-
cessed intuitively. Therefore, we assume a more cognitively 
plausible additive strategy (see also Shanteau, 1975):  

𝑃(𝐻!|𝐸) ∝ !
"5𝑃(𝐻!) + 𝑃(𝐸|𝐻!)6 (5) 

 (Averaging-Prior-Evidence, APES) 

Mathematically, APES can be regarded as an approxima-
tion, since it qualitatively reflects the “magnitude” of the 
product in (1), illustrated by the average side length instead 
of the area of the rectangle in Fig. 2. While POS remains on 
the prior probabilities (grey horizontal bars) and EOS only 
uses the likelihoods (green vertical bars), BUS correctly re-
gards the interaction of prior probabilities and likelihoods 
(multiplication). APES also considers both, but approximates 
the interaction by averaging the probabilities. 

Cognitively, it is simpler to derive an additive average of 
two magnitudes (e.g., ½×(90% + 20%)) than a multiplicative 
interaction. This is expressed in the mental model for averag-
ing subjective probabilities (Khemlani et al., 2015) and 
amounts to a “take-the-middle heuristic”.  

Empirically, one can find indicators for such additive strat-
egies in the literature on Bayesian reasoning: For instance, 
the responses of the participants in the study by Cohen and 
Staub (2015) could be better modeled as an additive combi-
nation of multiple probabilities than as a multiplicative com-
bination of probabilities. Shanteau (1975) showed that when 
updating probability estimations based on (non-informative) 

 
 
 
 
 

 
Figure 2: The highlighted areas show how the strat-
egies POS, EOS, BUS, and APES take into account 
the probability information – priors (grey horizontal 
bars) and likelihoods (green vertical bars). 
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evidence, the probability updates of the participants suggest 
averaging (APES) instead of multiplying (BUS).  

Research question 
Building on cognitive plausibility and empirical evidence, we 
argue that in situations without numerical representations one 
may assume a strategy, which averages probabilities of priors 
and evidence (APES). This strategy approximates exact 
Bayesian reasoning by reducing complexity without neglect-
ing information. In two computational explorations, we study 
the potential effectiveness of APES by investigating the fol-
lowing research question:  

For which types of situations (i.e., constellations of prior 
and likelihood values) can the averaging-priors-and-evi-
dence strategy (APES) be regarded as an adequate and effec-
tive approximation of the Bayesian update strategy (BUS) 
and as a substantial improvement with respect to the infor-
mation-neglecting strategies prior only and evidence only 
(POS, EOS)? 

Since we embrace a perspective of ecological rationality, 
we finally discuss the adequacy of the approximative strategy 
against the background of teachers’ diagnostic judgments and 
thus focus on situations of judging a certain piece of evidence 
(a student’s solution), which is indicative for one of several 
possible hypotheses (students’ misconceptions) (for an em-
pirical investigation of this situation, cf. Loibl & Leuders, 
2020).  

Methods and Results 

Study 1 
In the scenario for study 1, we assume a situation with two 
hypotheses 𝐻-, 𝐻" and evidence that is indicative for one mis-
conception (high likelihood for 𝐻") and reduces plausibility 
for the other misconception (low likelihood for 𝐻-). Accord-
ingly, we explore constellations with the following set of val-
ues:  

𝑃(𝐻-), 𝑃(𝐻") ∈[0;1], ∑𝑃(𝐻!) = 1 
𝑃(𝐸|𝐻-) ∈ [0.10; 0.40], 𝑃(𝐸|𝐻") ∈ [0.60; 0.90] 

We account for the noisiness of the probability estimates 
by interpreting the numerical values as centers of approxima-
tive intervals, e.g. 25% represents ca. 20-30%. 

For the computational simulation of the various strategies, 
we assume the following cognitive process: The probability 
information (priors 𝑃(𝐻!) and likelihoods 𝑃(𝐸|𝐻!)), and the 
evidence E are available. The goal is to decide which of the 
two posterior hypotheses 𝑃(𝐻!|𝐸) has the higher probability. 
To that purpose one of the following strategies is activated 
(the ≷-sign meaning “compare and decide for the larger”):  

𝑃(𝐻-) ≷ 𝑃(𝐻")  (POS) 
𝑃(𝐸|𝐻-) ≷ 𝑃(𝐸|𝐻")  (EOS) 
𝑃(𝐻-)𝑃(𝐸|𝐻-) ≷ 𝑃(𝐻")𝑃(𝐸|𝐻")  (BUS) 
-
"
[𝑃(𝐻-) + 𝑃(𝐸|𝐻-)] ≷

-
"
[𝑃(𝐻") + 𝑃(𝐸|𝐻")]  (APES) 

A normalization factor (e.g., Σ.𝑃(𝐻!)𝑃(𝐸|𝐻!)	for	BUS), 
which is necessary to attain a value of the posterior probabil-
ity, is not required for a decision between the hypotheses, 
since it is identical for both sides of the comparison in each 
strategy. 

The simulation and the graphical representation of the re-
sults was implemented in Cinderella (Richter-Gebert & 
Kortenkamp, 2011), a programming environment for numer-
ical calculation and visualization (source code available from 
the authors).  

Results of Study 1 
To evaluate and compare the various investigated reasoning 
strategies, we graphically display the outcome (the decision 
for a hypothesis) throughout the whole parameter space in a 
way that makes the phenomena most salient (see Fig. 3-5): 
Each dot represents a decision based on the respective strat-
egy for a certain set of parameters in the probability space. 
The decision depends on the comparison of the posterior 
probabilities for 𝐻- and 𝐻". The values of the prior probabil-
ities are represented by the x-coordinate. The accuracy of the 
decision is the corresponding posterior and is represented by 
the y-coordinate. For each value on the x-coordinate there is 
an interval of values on the y-coordinate due to the variation 
of the likelihood values. Numbers �-� indicate regions of 
decisions as explained in the text. 

Fig. 3 presents the results of the optimal Bayesian decision 
(BUS) when evidence is indicative for 𝐻". In region �, BUS 
leads to a decision for 𝐻-because the prior probability for 𝐻- 
is high. When the prior probability for 𝐻" is middle to high 
as in region �, BUS results in a decision for 𝐻" due to the 
evidence for 𝐻". For a certain prior probability constellation 
(region �) BUS leads to either 𝐻- or 𝐻" depending on the 
likelihood values.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BUS is the mathematical optimal update strategy and can be 
used for decisions by selecting the hypothesis with the high-
est posterior probability (in case of two hypotheses, the hy-
pothesis with a probability ³50%). The decision accuracy of 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Accuracy of the decision based 
on the BUS strategy.  

 

1766



the other strategies (EOS, POS, APES) depends on the accu-
racy of BUS and can never exceed the value for BUS. If a 
decision coincides with BUS, the accuracy of the decision is 
the same as for BUS. If the decision deviates from BUS, the 
accuracy of the decision corresponds to the lower decision 
accuracy for the opposite hypothesis following BUS (not dis-
played in Fig. 3). For example, the strategy EOS results in a 
decision for 𝐻". For certain prior and likelihood values (� in 
Fig. 4), this decision coincides with the optimal decision ac-
cording to BUS with the accuracy 𝑃/01(𝐻"|𝐸) ≥ 50%. For 
other prior and likelihood values, 𝐻- has the higher probabil-
ity according to BUS. Here, EOS deviates from BUS (� in 
Fig. 4) and, thus, the decision based on EOS has the (lower) 
accuracy 𝑃/01(𝐻"|𝐸) ≤ 50%.  

Fig. 4 presents the comparison of the decisions based on 
the information neglecting strategies (POS, EOS) and the op-
timal Bayesian decision (BUS) when evidence is indicative 
for 𝐻". The decision of the information neglecting strategies 
coincides with Bayesian reasoning for certain constellations 
of priors and likelihoods in regions �. The decision deviates 
in the broad regions � of prior values due to the disregard of 
evidence (POS) or priors (EOS), resulting in low decision ac-
curacy (i.e., posterior probability according to BUS below 
50%) in these regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 presents the comparison of the decision based on the 

averaging-priors-and-evidence strategy (APES) and the opti-
mal Bayesian decision (BUS) when evidence is indicative for 
𝐻". The decision based on APES coincides with Bayesian 
reasoning for most constellations of priors and likelihoods as 
shown by the broad regions �. In the prior region where the 
BUS decision for 𝐻- or 𝐻"depends on the likelihood constel-
lations (compare region � in Fig. 3), APES coincides with 
BUS in region � and deviates from BUS in region �, de-
pending on the likelihood constellations. Moreover, the devi-
ations only result in small reductions of the accuracy in com-
parison to the accuracy of the Bayesian decision. The small 
magnitude of the accuracy reduction is due to the fact that the 
region with deviations falls in the region with the smallest 
accuracy of the Bayesian decision, close to 50%.  

 

 

 

 

 

 
 
 
 

 

Study 2 
As an extension to the scenario of study 1, we explored the 
more complex situation of three hypotheses and a situation 
where the evidence is sensitive and specific for only one of 
the hypotheses (i.e., high likelihood only for one of the hy-
potheses, cf. Fig. 6, l.h.s.). We therefore explore situations 
with the following values: 

𝑃(𝐻-), 𝑃(𝐻"), 𝑃(𝐻() ∈[0;1], ∑𝑃(𝐻!) = 1 
𝑃(𝐸|𝐻-), 𝑃(𝐸|𝐻") ∈ [0.10; 0.40], 𝑃(𝐸|𝐻() ∈ [0.60; 0.90] 

The simulation algorithm of the strategies corresponds to 
study 1: A decision for one of the three hypotheses is reached 
by deciding for the highest posterior probability according to 
each strategy. The representation of the results, however, has 
to be adapted to the affordances of the higher dimensionality 
of three hypotheses. To that purpose, we use barycentric ho-
mogeneous coordinates. The diagram, which we call “hypo-
thegon” (cf. Fig. 6, r.h.s.; de Finetti, 2017; Leuders & Loibl, 
2020; Jøsang, 2016), extends the hypothesis line [0,1] for two 
hypotheses to a triangular prior space for three hypotheses. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 4: Accuracy of the decision based on information 
neglecting strategies POS (green, l.h.s.) and EOS (red, 
r.h.s.) in comparison to the accuracy of BUS (grey in the 
background).  

 
 

 
 

 
 

 
 
 
 
 
 
 
 
Figure 6: A situation with three hypotheses and their 
likelihoods (low likelihood 20% for 𝐻- and 𝐻", high 
likelihood 80% for 𝐻() with respect to evidence E 
(l.h.s). Any set of prior probabilities (e.g., 60%, 30%, 
10%) can be regarded as convex coordinates for a 
unique locus within a triangle (“hypothegon”) (r.h.s.). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Accuracy of the decision based on 
the averaging-priors-and-evidence strategy 
(APES, blue) in comparison to the accuracy 
of the decision based on BUS (grey).  
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Results of Study 2 
As outcome of the various strategies, we again display the 
accuracy of each decision, depending on the value of the prior 
probabilities.  In order to attain a more pronounced geometry, 
we chose to only display the results for a fixed likelihood 
(80%), keeping in mind that the likelihood interval leads to 
an interval of the accuracy value for fixed prior probabilities.  

Fig. 7 gives a comprehensive picture of the averaging-
prior-and-evidence strategy (APES, blue) compared to the 
Bayesian strategy (BUS, grey) when evidence is indicative 
for 𝐻(. In most regions, both strategies coincide with high 
decision accuracy in regions � with a large prior probability 
for one of the hypotheses (𝐻-, 𝐻", or 𝐻() and medium deci-
sion accuracy for region � with similar prior probabilities for 
all hypotheses (𝐻- ≈ 𝐻" ≈ 𝐻( ≈ 30%). The only prior re-
gion in which APES deviates from BUS, is region � with 
low prior probability for 𝐻( and similar prior probabilities for 
𝐻- and 𝐻" (𝐻- ≈ 𝐻" ≈ 50%). In our setting, the evidence is 
contra-indicative for 𝐻- and 𝐻" with ambiguous likelihoods 
for these hypotheses. This ambiguity comes into effect only 
in regions with similar and rather high prior probabilities. 
Due to the ambiguity the accuracy of APES drops from 70%-
50% to 50%-0% in region �. Further variation of the likeli-
hood values (not displayed here) does not alter the general 
picture but only slightly increases the region � in which 
APES deviates from BUS. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to compare the deviations of the decision based on 

the heuristic strategies EOS, POS, and APES from the ideal 
Bayesian decision (BUS), we calculate the differences in de-
cision accuracy (in %) and display the resulting “error distri-
bution” over the whole prior space (hypothegon), for fixed 
likelihoods (20%, 20%, 80%) (Fig. 8). For the information 
neglecting strategies EOS and POS, there are – similar to 
study 1 with two hypotheses (Fig. 4) – large deviations for 
EOS (displayed in red) in region � with extreme priors con-
trary to the evidence (EOS decision 𝐻(, BUS decision 𝐻- or 

𝐻") and large deviations for POS (displayed in green) in re-
gion � with priors slightly contrary to the evidence (POS de-
cision 𝐻- or 𝐻", BUS decision 𝐻().  

In contrast, for APES (displayed in blue) the deviations are 
much smaller and restricted to region � with extreme priors 
contrary to the evidence and ambiguous likelihoods for 𝐻- 
and 𝐻". For more extreme likelihood parameters (e.g., 10%, 
10%, 90%) this region is closer to the extreme boundary and 
for less extreme likelihood parameters (e.g., 40%, 40%, 60%) 
it approaches the middle but with only very small values of 
deviation (<10%, not displayed here). As shown in Fig. 8, 
there are no deviations for any strategy, when priors and evi-
dence suggest identical decisions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion 
In our study, we investigated heuristic strategies in Bayesian 
reasoning with respect to their accuracy, depending on the set 
of values of prior probabilities of the hypotheses and likeli-
hoods of the evidence. In addition to the mathematically op-
timal Bayesian strategy (BUS) and the well-documented heu-
ristic strategies, that neglect either evidence or prior infor-
mation (EOS, POS), we proposed an averaging strategy 
(APES) and underpinned its plausibility based on cognitive 
and empirical arguments from literature (e.g., Cohen & 
Staub, 2015; Khemlani et al., 2015; Shanteau, 1975). 

The exploration of a broad parameter space (two and three 
hypotheses with priors from [0;1], evidence with likelihoods 
from [0.6;0.9]) yielded the following insights:  
• Processing of evidence only (EOS, prior neglect) or priors 

only (POS) results in low accuracy compared to the 
Bayesian update strategy (BUS) in broad regions of prior 
probabilities. These deviations occur when priors and ev-
idence suggest divergent decisions (� in Fig. 4; � & � 
in Fig. 8). 

• Averaging prior and evidence probabilities (APES) is a 
good approximation for Bayesian reasoning, leading to 
identical decisions for most values of priors and likeli-
hood (�, � in Fig. 5; � & � in Fig. 7 & Fig. 8).  

Figure 8: Deviations of decision accuracy for 
EOS, POS, and APES from the ideal Bayesian 
decision. The size of the dots corresponds to the 
magnitude of the deviations with the largest dots 
(e.g., in the corners) corresponding to a 100% 
deviation.  

Figure 7: Accuracy of the decision based on 
the averaging-priors-and-evidence strategy 
(APES, blue) in comparison to the accuracy 
of BUS (grey) with regard to three hypothe-
ses. The prior probabilities are coordinates 
within the triangle (cf. Fig. 6). 
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• Deviations of APES from BUS remain small and occur in 
confined regions of prior values. We found two situations 
(ranges of values) where the decision based on APES de-
viates from the BUS decision: (1) similar values of com-
peting posteriors (� in Fig. 5), which is also the most in-
conclusive (i.e., least accurate) situation in exact Bayes-
ian reasoning, (2) ambiguous hypotheses (here: hypothe-
ses with similar low likelihoods) sharing high prior prob-
abilities (� in Fig. 7 & 8). 

From a perspective of ecological rationality, heuristic strat-
egies possibly constitute viable and efficient cognitive strat-
egies in certain situations (cf. Simon, 1955; Gigerenzer & 
Hoffrage, 1995). To investigate the heuristic strategies with 
regard to their ecological rationality, we specify the situa-
tional framing as teachers’ diagnostic judgments on students’ 
potential misconceptions (with certain prior probabilities) 
based on responses to tasks (evidence). For instance, what is 
the plausibility of the hypothesis 𝐻" that a student has mis-
conception 2 (e.g., “more decimals make smaller numbers”) 
after a response to a task (e.g., “1.52 < 1.4”)? A teacher ide-
ally considers all information (as subjective probabilities not 
necessarily represented numerically) and processes this infor-
mation to arrive at a decision on the misconception with the 
highest posterior probability. However, given the complexity 
of the situation, it is likely that a teacher applies one of the 
heuristic strategies. For the case of teachers’ decisions, we 
put forward the following interpretations: 
• As teachers use diagnostic tasks in order to receive evi-

dence about their students’ skills and misconceptions, 
teachers are not likely to ignore this evidence. We there-
fore argue that teachers do not apply a priors-only strategy 
(POS) when evidence is available. 

• When teachers apply an evidence-only strategy (EOS), 
they focus on students’ errors and tend to react immedi-
ately with instruction (Herppich, Wittwer, Nückles, & 
Renkl, 2016; Phelps-Gregory & Spitzer, 2018). This may 
be an inaccurate diagnostic decision for misconceptions 
with low base rate (and inefficient considering restricted 
instructional time). However, when applied as screening 
for further diagnostic interaction, the strategy may be ap-
propriate.  

• While Bayesian reasoning is computationally rather com-
plex, a simple averaging strategy (APES) seems not only 
cognitively plausible, but also appropriate and feasible in 
situations with quick on-the-fly assessment. Our results 
indicate that they lead to optimal (Bayesian) decisions in 
most cases, and only deviate in situations of ambiguity 
(similar posteriors). In these cases, an appropriate deci-
sion for teachers would be to not decide on one miscon-
ception or the other but to resume assessment. 

This analysis gives strong support to consider averaging and 
considering all information (APES) as a promising heuristic 
strategy for Bayesian decision situations in general, and eco-
logically valid for teachers’ diagnostic judgments. However, 
in spite of ecological rationality, we do not posit that this 
plausibility implies actual prevalence: We have no infor-
mation on teachers’ application of such a strategy during 

teaching. Furthermore, teachers’ diagnostic cognitive pro-
cesses are far more complex than the focus of our analysis 
(e.g., single- vs. multiple-cues judgments) and require more 
comprehensive models (Herppich et al., 2018; Loibl, Leud-
ers, & Dörfler, 2020).  

Of course, it would be interesting to further investigate the 
heuristic strategies within more complex situations (multiple 
cues, further sets of values for sensitivity of evidence), and to 
better understand the role of ambiguity. Also, the computa-
tional model here does not explicitly reflect the noisiness of 
analog non-numerical mental representations of subjective 
probabilities (cf. research on magnitude and analogue repre-
sentations: Gallistel, 2011; Khemlani et al., 2015; Leibovich, 
Katzin, Harel, & Henik, 2017 or models for uncertainty in 
probability estimation: Jøsang, 2016). 

However, we consider the most pressing aim for further re-
search to empirically ascertain the validity of the averaging 
strategy (APES) in non-numerical situations, since empirical 
support is still rare. Deriving empirical evidence for APES in 
non-numerical situations may be challenging due to the small 
deviations of APES from BUS. A promising route to this goal 
is to extend the model from deciding on the largest posterior 
to estimating posterior values. Following this route, we 
gained first experiences with intervention studies in which we 
systematically prompted the processing of all probability in-
formation similar to APES in the context of teacher judg-
ments (Loibl & Leuders, 2020). 

References  
Cohen, A. L., & Staub, A. (2015). Within-subject consistency 

and between-subject variability in Bayesian reasoning 
strategies. Cognitive Psychology, 81, 26-47. 

De Finetti, B. (2017). Theory of Probability: A Critical Intro-
ductory Treatment. New York, NY: John Wiley & Sons.  

Edwards, W. (1968). Conservatism in human information 
processing. In B. Kleinmuntz (Ed.), Formal Representa-
tion of Human Judgment (pp. 17-52). New York, NY: 
Wiley. 

Gallistel, C.R. (2011). Mental magnitudes. In S. Dehaene, 
E.M. Brannon (Eds.), Space, time and number in the brain: 
Searching for the foundations of mathematical thought (pp. 
3-12). London: Elsevier. 

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast 
and frugal way: models of bounded rationality. Psycholog-
ical Review, 103(4), 650. 

Gigerenzer, G., & Hoffrage, U. (1995). How to improve 
Bayesian reasoning without instruction: Frequency for-
mats. Psychological. Review, 102, 684-704.  

Herppich, S., Wittwer, J., Nückles, M., & Renkl, A. (2016). 
Expertise amiss: Interactivity fosters learning but expert tu-
tors are less interactive than novice tutors. Instructional 
Science, 44, 205-219. 

Herppich, S., Praetorius, K., Förster, N., Glogger-Frey, I., 
Karst, K., Leutner, D., Behrmann, L., Böhmer, M., Ufer, 
S., Klug, J., Hetmanek, A., Ohle, A., Böhmer, I., Karing, 
C., Kaiser, J., & Südkamp, A. (2018). Teachers’ assess-
ment competence: Integrating knowledge-, process-, and 

1769



product-oriented approaches into a competence-oriented 
conceptual model. Teaching and Teacher Education, 76, 
181-193. 

Jøsang, A. (2016). Generalising Bayes’ theorem in subjective 
logic. IEEE International Conference on Multisensor Fu-
sion and Integration for Intelligent Systems (MFI) (pp.462-
469). Baden-Baden. 

Juslin, P., Nilsson, H., & Winman, A. (2009). Probability the-
ory, not the very guide of life. Psychological Review, 
116(4), 856-874. 

Juslin, P., Lindskog, M., & Mayerhofer, B. (2015). Is there 
some-thing special with probabilities? Insight vs. compu-
tational ability in multiple risk combination. Cognition, 
136, 282-303. 

Kahneman, D., & Tversky, A. (1996). On the reality of cog-
nitive illusions. Psychological Review, 103(3), 582-591. 

Khemlani, S. S., Lotstein, M., & Johnson‐Laird, P. N. (2015). 
Naive probability: Model‐based estimates of unique 
events. Cognitive Science, 39(6), 1216-1258. 

Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). 
From ‘sense of number’ to ‘sense of magnitude’ – the role 
of continuous magnitudes in numerical cognition. Behav-
ioral and Brain Sciences, 40, E164.  

Leuders, T., & Loibl, K. (2020). Processing probability infor-
mation in non-numerical settings – teachers’ bayesian and 
non-bayesian strategies during diagnostic judgment. Fron-
tiers in Psychology, doi: 10.3389/fpsyg.2020.00678 

Loibl, K., Leuders, T., & Dörfler, T. (2020). A Framework 
for Explaining Teachers’ Diagnostic Judgements by Cog-
nitive Modeling (DiaCoM). Teaching and Teacher Educa-
tion, 91. doi: 10.1016/j.tate.2020.103059 

Lopes, L. L. (1985). Averaging rules and adjustment pro-
cesses in Bayesian inference. Bulletin of the Psychonomic 
Society, 23, 509-512. 

Mandel, D. R. (2014). The psychology of bayesian reasoning. 
Frontiers in Psychology, 5, 1144. 

Martignon, L., Vitouch, O., Takezawa, M., & Forster, M. R. 
(2003). Naive and yet enlightened: From natural frequen-
cies to fast and frugal decision trees. In D. Hardman & L. 
Macchi (Eds.), Thinking: Psychological perspective on 
reasoning, judgment, and decision making (pp. 189-211). 
Chichester, UK: Wiley. 

Phelps-Gregory, C. M., & Spitzer, S. M. (2018). Developing 
prospective teachers’ ability by classroom intervention: 
Replicating a classroom intervention. In T. Leuders, J. 
Leuders, & K. Philipp (Eds.), Diagnostic Competence of 
Mathematics Teachers: Unpacking a complex construct in 
teacher education and teacher practice (pp. 223-240). 
New York: Springer. 

Richter-Gebert, J., & Kortenkamp, U. H. (2000). User man-
ual for the interactive geometry software cinderella. 
Springer Science & Business Media. 

Shanteau, J. (1975). Averaging versus multiplying combina-
tion rules of inference judgement.  Acta Psychologica, 39, 
83-89. 

Simon, H. A. (1995). A behavioral model of rational choice. 
The Quarterly Journal of Economics, 69(1), 99-118. 

Sundh, J. (2019). The Cognitive Basis of Joint Probability 
Judgments. Processes, Ecology, and Adaption. Digital 
Comprehensive Summaries of Uppsala Dissertations from 
the Faculty of Social Sciences, 166. Uppsala: Acta Univer-
sitatis Upsaliensis.  

Villejoubert, G., & Mandel, D. R. (2002). The inverse fal-
lacy: an account of deviations from Bayes’ theorem and the 
additivity principle. Memory & Cognition, 30(2), 171-178.  

Weber, P., Binder, K., & Krauss, S. (2018). Why can only 
24% solve Bayesian reasoning problems in natural fre-
quencies: Frequency phobia in spite of probability blind-
ness. Frontiers in Psychology, 9, 1833. 

Zhu, L., & Gigerenzer, G. (2006). Children can solve Bayes-
ian problems: The role of representation in mental compu-
tation. Cognition, 98, 287-308. 

 

1770


