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Abstract

The Hot Stove Effect is a negativity bias resulting from the
adaptive character of learning. The mechanism is that learn-
ing algorithms that pursue alternatives with positive estimated
values, but avoid alternatives with negative estimated values,
will correct errors of overestimation but fail to correct errors
of underestimation. Here we generalize the theory behind the
Hot Stove Effect to settings in which negative estimates do not
necessarily lead to avoidance but to a smaller sample size (i.e,
a learner selects fewer of alternative B if B is believed to be in-
ferior but does not entirely avoid B). We demonstrate formally
that the negativity bias remains in this set-up. We also show
that there is a negativity bias for Bayesian learners in the sense
that most such learners underestimate the expected value of an
alternative.
Keywords: learning; stopping; sampling; Bayesian models

Introduction

Learning from experience does not necessarily generate un-
biased beliefs, partly due to psychological biases but also due
to biases in the information learners sample and get exposed
to. One important bias in sampling is the so called ”hot stove
effect” (Denrell and March, 2001) which refers to the asym-
metry in error correction generated by adaptive learning pro-
cesses. The key idea is that that the tendency to avoid alter-
natives with unfavourable past outcomes generates a biased
set of experiences. Alternatives that are underestimated - be-
lieved to be worse than what they are – are unlikely to be
tried and sampled again which implies that errors of under-
estimation are unlikely to be corrected. Alternatives that are
overestimated - believed to be better than what they are – are
likely to be tried and sampled again which implies that errors
of overestimation are likely to be corrected. This asymmetry
in error correction generates a biased set of experiences which
in turn can give rise to biased judgments (Denrell, 2005), in-
cluding ingroup bias and apparent risk averse behavior (Den-
rell, 2005, 2007).

There is good experimental support for the hot-stove effect
at the individual level and researchers in psychology have re-
lied on the hot stove effect to explain regularities in risk tak-
ing in experimental studies (Erev and Roth, 2014) and why
people underestimate the trustworthiness of others (Fetchen-
hauer and Dunning, 2010). Researchers in finance (Dittmar
and Duchin, 2016) have used field data to demonstrate that
the hot stove effect can explain risk taking behavior by ex-
ecutives. The hot stove effect also has important implica-
tions for information aggregation and online reviews: if con-
sumers avoid products with poor reviews, and consumers re-

view products they buy, negative reviews will be more per-
sistent than positive reviews, generating biased averages (Le
Mens et al, 2018).

Past theoretical work on the hot stove effect have assumed
that negative experiences may lead to avoidance, i.e., that the
alternative is not tried at all (Denrell, 2005; 2007). Clearly,
if no more information is available, a negative impression
will persist. In many settings, however, a negative belief or
impression may not lead to avoidance of the alternative but
merely to a smaller sample size. An animal who has a more
favourable impression of the energy content from plant of
type A than from plant of type B, may search for plants of
type A. During this search for plants of type A, some plants
of type B may be incidentally be found. The result is that the
animal samples more plants of type A (because the search is
focused on such plants) than of type B, but the animal does
not avoid plants of type B but simply samples fewer of them.
Similarly, a firm may prefer to hire graduates from university
A, but may nevertheless hire some, although fewer, graduates
from university B if there are not enough graduates from A
that accepts its offers.

In this paper I generalize the theory behind the hot stove
effect and show that it holds even if a negative impression
only leads to a reduction in the sample size, not necessarily
to avoidance. Specifically, I show that for a broad class of
learning algorithms in which the sample size is a function of
the past belief, the final belief will be biased. If the sample
size is higher if the past belief was more positive, there is a
negativity bias: the final belief will be lower than the expected
value of the random variable the learner is learning about.
This result also applies to taking averages: the average of a
sample will be biased if the total sample size is a function of
the average based on an initial subset.

I also examine if the bias remains for a Bayesian learner. I
show that there is no bias on average for a Bayesian learner:
the average belief will be equal to the expected value of the
random variable the learner is learning about. However, I also
show that a majority of Bayesian learner will underestimate
the variable they are learning about if they increase the sam-
ple size as a result of initial positive beliefs.

These results imply that a large class of sensible and adap-
tive learning processes can be expected to generate biased
beliefs, even if decision-makers process the available infor-
mation in a seemingly unbiased way (i.e. taking averages).
Indeed, even rational Bayesian learners will tend to underes-
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timate the expected value of an alternative (i.e., most will do
so) if the total sample size is higher when the initially ob-
served payoffs are high. Adaptive sampling processes are
common in reality and are often necessary to reduce search
costs. It is not sensible, for example, to continue to sample an
alternative a fixed number of times if initial trials reveal that
this alternative has much lower payoff than other available al-
ternatives. The results in this paper show that even unbiased
processing of information generated by such sampling poli-
cies can generate seemingly biased beliefs. Adaptive sam-
pling policies thus offer an alternative explanation of biases
in beliefs, such as a tendency to underestimate the extent to
which others are trustworthy.

Illustration

To illustrate the basic ideas, we consider a simple two period
set-up. In period one, a learner samples an alternative k times
and observes the payoff generated. That is, the learner ob-
serves k payoffs, x1,1,x1,2, ...,x1,k, each independently drawn
from the payoff distribution f (x), where f (x) is assumed to be
a normal distribution with mean zero and variance s2. Based
on the observed payoff, the learner computes the average ob-
served payoff after the first period: x̄1 = (1/k)Âk

j=1 x1, j.
In the second period, the learner takes an additional sample

and observes m payoffs, x2,1,x2,2, ...,x2,m, each independently
drawn from the payoff distribution f (x). We assume that the
size of this sample, m, is a function of x̄1. For example, the
learner may take a larger sample if the observed average first
period payoff is high (x̄1 is high), than if the observed average
first period payoff is low (x̄1 is low), because the alternative
is believed to be more rewarding when the observed average
first period payoff is high compared to when it is low. To
illustrate the impact of such an adaptive sample size policy,
suppose the sample size in period two is equal to m = h(high)
whenever x̄1 > c and equal to m = l(low) whenever x̄1  c.

After the second period the learner computes the average of
all the payoffs observed in period one and two: x̄2 = (1/(k+
m))[Âk

j=1 x1, j +Âm

j=1 x2, j]. We are interested in whether this
average is unbiased or not.

The answer is that this average will be biased. To illus-
trate this, suppose the learner samples two payoffs in the first
period (k = 2), samples ten more if the first period average
is positive (h = 10) but only samples one more if the first
period average is negative (l = 1). The average of all ob-
served payoffs after the second period will then be negative.
When s, the standard deviation of the payoff, equals 1, then
E[x̄2] =�0.141 and the proportion of averages that are nega-
tive is 0.587. When s= 5, E[x̄2] =�0.705 and the proportion
of averages that are negative is 0.583. More generally,

E[x̄2] =� s
p

k(h� l)p
2p(k+ l)(k+h)

e
�c

2
k/2s2

, (1)

(see the appendix for a derivation of this equation). This
equation shows that the bias depends on how the sample size
varies with x̄1. If the learner takes a larger sample when x̄1 is

high compared to when x̄1 is low (h > l), there is a negative
bias: E[x̄2] < 0. If the learner instead takes a larger sample
when x̄1 is low compared to when x̄1 is high (h < l), there is
a positive bias: E[x̄2] > 0. Equation (1) also implies that the
bias is larger when the payoffs are more variable, i.e., when
s2 is larger. In summary, an average based on an adaptive
sampling policy (adaptive in the sense that the sample size
changes as a result of the initially observed average) will be
biased and the bias depends on the type of the sampling pol-
icy (increasing or decreasing in the initial average). Because
learners often do regulate sample sizes in response to feed-
back from initial samples, this implies that learning processes
quite generally leads to biased beliefs, at least if the beliefs
are based on the average payoffs observed. Note that this oc-
curs even if the decision-maker does not process information
in a biased way. The decision-maker simply take the aver-
age of the observed payoffs. This averaging process, which
is unbiased when the sample size is fixed, becomes biased
when the total sample size depends on the initially observed
average.

Intuition

To understand the reason for the bias, note that the sum of
all observations after the second period is the sum of two
components: the sum of all observations after the first period
(Âk

j=1 x1, j) and the sum of all observations in the second pe-
riod (Âm

j=1 x2, j.). The sample size taken in the second period
(m) will impact the relative weight of these two components.
The reason for the negative bias, when the learner takes a
larger sample when x̄1 is high compared to when x̄1 is low
(h > l), is that the first component will be weighted relatively
more when x̄1 is low which implies that the sample size taken
in period two is low (m = l).

To illustrate this, suppose the average after two observa-
tions in the first period (k = 2) is x̄1 = 1. The sum in the
first two periods was then equal to kx̄1 = 2. Suppose c = 0,
implying that the learner will take a large sample (m = h),
whenever x̄1 > 0. Suppose h = 10, i.e., the sample size is
ten in period two if the first period average was positive. The
average payoff observed in both periods is then

x̄2 =
2+Â10

j=1 x2, j

2+10
=

2
2+10

+
Â10

j=1 xi, j

2+10
.

The expected value of an observation in the second period is
zero, i.e., E[x2, j = 0]. It follows that

E[x̄2|x̄2 = 1] =
2

2+10
=

1
6
,

which is close to zero. A positive first period average payoff
thus tends to regress to the mean of the distribution, which is
zero. The reason is that a large sample is taken in the second
period which implies that the first period average will not be
weighted much.

Suppose, in contrast, that the average after two observa-
tions in the first period (k = 2) was x̄1 =�1. The sum in the
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first two periods was then equal to kx̄1 = �2. When c = 0,
the learner will take a small sample (m = l) in the second pe-
riod because x̄1 = �1 < c. Suppose l = 1: only one sample
is taken if the first period belief was negative. The average
payoff observed in both periods is then

x̄2 =
�2+ x2,1

2+1
=

�2
2+1

+
x2,1

2+1
.

Again, the expected value of an observation in the second
period is zero, i.e., E[x2,1 = 0]. It follows that

E[x̄2|x̄2 =�1] =
�2
3

,

which is further away from zero than E[x̄2|x̄2 = 1] = 1
6 is. A

negative first period average payoff thus tends to regress less
to the mean of the distribution than a positive first period av-
erage payoff does. The reason is that a small sample is taken
in the second period if the first period average is negative.
The negative first period average will thus be weighted more
in the final average.

As this example shows, negative first period averages are
more ’persistent’ in the sense that they are given a larger
weight than positive first period averages are when the learner
samples more after a positive compared to a negative first pe-
riod average. Because negative and positive first period aver-
ages of the same magnitude are equally likely, when the pay-
off distribution is normal with mean zero (this distribution is
symmetric around zero), the greater persistence of negative
first period averages explains the overall negative bias.

The impact of variance can also be understood in a similar
way. If the payoff distribution is more variable, first period
averages will tend to differ more from zero, both in the posi-
tive and negative directions. Positive first period averages will
tend to regress more to the mean (which is zero) than nega-
tive averages do. When the negative first period averages are
more extreme, because the variance is larger, the result is a
stronger bias.

General Theorem about Biased Averages

The bias generated by an adaptive sampling size policy does
not only hold for the normal distribution and the specific bi-
nary sampling policy considered above (high above zero, low
below) but holds for any distribution and a large class of adap-
tive sampling policies.

Theorem 1: In period one, a learner observes k payoffs,
x1,1,x1,2, ...,x1,k, each independently drawn from the payoff
distribution f (x), with expected value E[x] = u. In period
two the learner samples n(x̄1) payoffs, each independently
drawn from the payoff distribution f (x). Here n(x̄1) � 1,
and n(x̄1) is a function of the first period average payoff:
x̄1 = (1/k)Âk

j=1 x1, j. Let x̄2 be the average observed payoff
during both periods one and two. Then i) E[x̄2]< u whenever
n(x̄1) is a strictly increasing function of x̄1, and ii) E[x̄2] > u

whenever n(x̄1) is a strictly decreasing function of x̄1.
Proof: See the Appendix.

Alternative Learning Models

So far we have assumed that the learner computes the aver-
age of the observed payoffs, but a similar bias holds for sev-
eral other learning models. Suppose, for example, that the
encounters objects sequentially and gives more weight to the
most recently observed payoff. This results in a similar bias:

Theorem 2: In period one, a learner observes k payoffs,
x1,1,x1,2, ...,x1,k, each independently drawn from the pay-
off distribution f (x), with expected value E[x] = u. The
learner updates his or her belief, z after each observed pay-
off, giving more weight to the most recently observed pay-
off. Specifically, if the prior belief was zt , the new belief is
zt+1 = (1� b)zt + bxt , where b is the weight on the most re-
cently observed payoff. The initial belief is assumed to be
unbiased: z0 = u. In period two the learner samples n(z1,k)
payoffs, each independently drawn from the payoff distribu-
tion f (x). Here n(z1,k)� 1, and n(z1,k) is a function of belief
after the k observed payoffs in the first period, z1,k. Let z2 be
the belief after both periods one and two. Then i) E[z2] < u

whenever n(z1,k) is a strictly increasing function of x̄1, and ii)
E[z2]> u whenever n(z1,k) is a strictly decreasing function of
x̄1.

Proof: See the Appendix.

Bayesian updating

One might suspect that the bias occurs because the learner
does not take sample size into account when updating. A
rational learner should after all update less when the sam-
ple size is small and update more if the sample size is large,
which would seem to work against the above bias. This
leads to the question whether the bias persists if the learner
is a Bayesian updater, who takes sample size into account
when updating, and whose belief is the conditional expecta-
tion given the observed data, i.e., b2 = E[u|X ]? The answer is
that there is no bias on average in the following sense: the ex-
pected value of the belief after the two periods, E[b2], is equal
to the expected value of the prior. For example, if Bayesian
learners are learning about the mean of a random variable, ui,
and the means are drawn from a prior distribution, f (ui), with
expected value E[ui] = m, then E[b2] = m. Averaging over
different learners, who draw different values of ui, thus gen-
erates no bias. Nevertheless, the distribution of beliefs may
still be ’biased’ (or skewed) in the following sense: a major-
ity of Bayesian updaters will have a belief after two periods
below m.

To explain this in more detail, consider a learner who ob-
serves independent draws from a random variable with dis-
tribution fi(X) with expected value ui. The learner knows
that ui is drawn from a prior distribution with expected
value m (E[ui] = m). Let b1 be the belief after having ob-
served k independent draws x1,1,x1,2, ...,x1,k from fi(X) in
the first period, b1 = E[ui|x1,1,x1,2, ...,x1,k]. Let b2 be the
belief after all observations, in both period one and two:
b2 = E[ui|x1,1, ...,x2,n(b1)].
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It is now important to distinguish between two ways in
which the belief of a learner could be ’biased’. Consider, first,
a given value of ui = k. We may ask if the expected belief is
unbiased in the sense that E[bn|ui = k] = k, where bn is the be-
lief after a fixed sample of n observations (fixed in the sense
that the number of observations is independent of the value
of the observations). The average is unbiased in this sense
but it is well-known that Bayesian updating is not. Suppose
for example that ui is drawn from a normal distribution with
mean zero and variance one. The learner observes xi = ui+ei

where ei is drawn from a normal distribution with mean zero
and variance one. For this set up it is well-known that ex-
pected value of the posterior after one observation is xi/2
(e.g., DeGroot, 1970). Suppose now ui = 5. The expected
value of the belief after one observation, given that ui = 5,
equals E[x1/2|ui = 5] = 2.5 which is lower than 5. Bayesian
updating can thus be biased in the sense that the expected be-
lief, given a set of observations and ui = k, is not equal to k.
The reason is that the belief only gradually increases from the
prior (zero) towards the expected value (five).

Bayesian updating is unbiased, however, if we average over
all learners, in the following sense. Let bi denote the belief
of a Bayesian learner, i.e., bi = E[ui|X ], where X is the data
observed. Then E[bi] = m where m = E[ui] is the expected
value of the prior. For example, suppose ui is drawn from a
normal distribution with mean zero and variance one and the
learner observes xi = ui+ei, where ei is drawn from a normal
distribution with mean zero and variance one. We then have
E[bi] = E[xi/2] = E[(ui+ei)/2] = 0. Thus, E[bi] = E[ui] = 0.

We now show that Bayesian updating remains unbiased in
this latter sense, even if the sample size in period two depends
on the belief after period one. This is in fact true for any
distribution:

Theorem 3: In period one the learner observes k independent
draws x1,1,x1,2, ...,x1,k, from distribution fi(X) with expected
value ui. The learner knows that ui is drawn from a prior dis-
tribution, f (ui), with expected value E[ui] =m. In period two,
the learner observes n(b1) independent draws from distribu-
tion fi(X): x2,1,x2,2, ...,x2,n(b1). The sample size in the second
period, n(b1), is a function of the belief after the first period,
b1 = E[ui|x1,1, ...,x1,k]. Let b2 be the belief after all observa-
tions, in both period one and two: b2 = E[ui|x1,1, ...,x2,n(b1)].
Then E[b2] = m.
Proof of Theorem 3: The proof is very simple. We condition
on the belief after the first period: E[b2|b1]. Because condi-
tional expectations are martingales (e.g., Williams, 1991, p.
96), we have E[b2|b1] = b1. That is, there is no change, in
expectation, from the belief after period one to the belief af-
ter the information in the second period. This is true since if
information that would lead to such a change could be antic-
ipated in period one it should be already have been incorpo-
rated into the belief, of a rational agent, in period one. From
E[b2|b1] = b1 it follows that E[b2] = Eb1 [E[b2|b1]] = E[b1].
By the tower property of martingales (e.g., Williams, 1991,
p. 88) we have E[b1] = E[E[ui|x1,1,x1,2, ...,x1,k]] = E[ui] =m.

Thus, E[b2] = m.

While there is no bias when averaging over the beliefs by
all learners (i.e., E[b2] =m), most Bayesian learners may nev-
ertheless end up with a belief below m if positive beliefs lead
to larger sample sizes. To illustrate this, suppose fi(X) is a
normal distribution with mean ui and variance s2

e
. Moreover,

suppose ui is drawn from a normal distribution with mean m

and variance s2
u
. The learner observes k independent draws

x1,1,x1,2, ...,x1,k from fi(X) in the first period. In period two,
the learner observes n(b1) independent draws from distribu-
tion fi(X): x2,1,x2,2, ...,x2,n(b1).

Theorem 4: If the payoff and the prior distributions are
both normal, then i) whenever n(b1) is a strictly increasing
function of b1, most learners will, after the second period,
underestimate the random variable they are learning about:
Pr(b2 < m)> 0.5. ii) Whenever n(b1) is a strictly decreasing
function of b1, most learners will, after the second period,
overestimate the random variable they are learning about:
Pr(b2 > m)> 0.5.
Proof: See the Appendix.

Thus, even if Bayesian learners are learning about a sym-
metric distribution, and they have a prior which is symmetric
around zero (m = 0), most learners will end up with a neg-
ative belief after sampling. This is because of the adaptive
sampling policy. The intuition is similar to that for the bias
for the learning policy that simply takes the average: nega-
tive initial beliefs are more persistent because the learner will
then not take many additional samples and the initial few neg-
ative observations will be weighted heavily. Note that such a
bias would not occur if the learner followed a fixed sampling
policy and decided, at the outset, how many samples to take.
Such a learner would, when learning about a normally dis-
tributed payoff with a mean taken from normally distributed
prior with mean zero, be equally likely to have a negative or
a positive belief. Note also that when sampling is adaptive all
Bayesian learner know that only 50% of all means are nega-
tive. Still, most Bayesian learners end up believing that the
mean they observe is negative.

That a majority of Bayesian learners end up with a nega-
tive belief may seem paradoxical since on average there is no
bias: E[b2] = 0 when m= 0, i.e., the average belief, averaging
over all Bayesian learners, is equal to the mean of the prior.
The paradox is resolved by noting that the learners who be-
lieve the mean is negative are less confident in this estimate
than the learners who believe that the mean is positive and
thus took a larger sample in the second period. This results
in a skewed distribution of beliefs after the second period.
Most beliefs are below m = 0 but those below m = 0 are less
likely to be extreme beliefs than beliefs above m = 0 are since
beliefs below m = 0 are based on smaller sample sizes than
those above m = 0.

Because Bayesian updating with normal distributions re-
lies on the observed average it may also seem puzzling that
Bayesian updating is unbiased in the sense that E[b2] = m
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(Theorem 3) while averaging is biased in the sense that
E[x̄|ui = k] < k for all k (Theorem 1). Consider again
the case when ui is drawn from a normal distribution with
mean m and variance s2

u
. In period one the learner ob-

serves k independent draws x1,1,x1,2, ...,x1,k, x1, j = ui + e j

where e j are independently drawn from a normal distribu-
tion with mean zero and variance s2

e
. In period two, the

learner observes n(b1) independent draws from the same dis-
tribution: x2,1,x2,2, ...,x2,n(b1), where n(b1) is a function of
b1 = E[ui|x1,1, ...,x1,k]. The Bayesian estimate of ui given
the observations in both periods equals (DeGroot, 1970):
E[ui|X ] = (x̄s2

u
+ (s2

e
/n2)m)/(s2

u
+ (s2

e
/n2)), where n2 =

k+ n(b1), the total number of observations in both periods,
and x̄ is the average of all observations in both periods. As
s2

u
! • E[ui|X ]! x̄, i.e., converges to the average. How can

then the Bayesian estimate be unbiased while the average is
biased? The puzzle is resolved by noting that when s2

u
grows

large compared to s2
e
, the signal to noise ratio (s2

u
/s2

e
) be-

comes large. When s2
u
! • the signal to noise ratio goes to

infinity. The noise term is then vanishingly small compared
to the values of ui. Because the bias in the average depends on
the possibility that the first period observations can far below
(or above) ui, i.e., depends on noise, there is only a vanish-
ingly small bias in the average when s2

u
! •, resolving the

seeming paradox.

Implications for Understanding Learning

The bias resulting from adaptive sampling policies implies
that even seemingly unbiased learning algorithms, such as av-
eraging or Bayesian updating, can result in biased beliefs, at
least in the sense that most learners underestimate (or over-
estimate) an alternative. This offers an alternative explana-
tion of some judgment biases; an explanation that does not
require a psychological bias that assumes biases in informa-
tion processing. For example, suppose it is observed that a
firm tend to underestimate the productivity of graduates from
universities. Such a negativity bias. can be explained by an
adaptive sampling policy (the firm tend to hire fewer people
from universities it has had worse experience with) and does
not require motivated reasoning or a cognitive bias.

Appendix: Proofs

Derivation of equation 1:

E[b2] = P(x̄1 > c)E[b2|x̄1 > c]+P(x̄1 < c)E[b2|x̄1 < c].

We have

E[b2|x̄1 > c] = E[
S2

k+h
|x̄1 > c]+E[

x̄1k

k+h
|x̄1 > c].

where S2 is the sum of the observations in period two. Due to
independence, E[ S2

k+h
|x̄1 > c] = 1

k+h
E[S2] = 0. Using the ex-

pression for the expectation of a truncated normal distribution
(e.g. Greene 2000, p. 952) we have

E[x̄1|x̄1 > c] =
sep

k

f(a)
1�F(a)

,

where a = c/(se/
p

k) = �c

p
k/se. Moreover, P(x̄1 > c) =

1�F(a). Hence,

P(x̄1 > c)E[b2|x̄1 > c] = (1�F(a)) k

k+h
(

sep
k

f(a)
1�F(a)

)

=
se

p
k

k+h
f(a).

Similarly,

P(x̄1 < c)E[b2|x̄1 < c] = F(a) k

k+ l
(� sep

k

f(a)
F(a)

)

=�se

p
k

k+ l
f(a).

Overall we get

E[b2] =
se

p
k

(k+ l)(k+h)
[((k+ l)f(a)� (k+h)f(a)]

=� se

p
k

(k+ l)(k+h)
[(h� l)f(a)].

Now, f(a) = 1p
2p e

�a2/2. Hence,

E[b2] =� se

p
k(h� l)p

2p(k+ l)(k+h)
e
�c

2
k/2s2

e .

Proof of Theorem 1: The average of all payoffs observed in
periods one and two is, given the average observed in period
one (x̄1), is

x̄2 =
kx̄1 +Ân(x̄1)

j=1 x2, j

k+n(x̄1)
,

where kx̄1 is the sum of all observed payoffs in the first period.
Thus,

E[x̄2|x̄1] =
kx̄1 +E[Ân(x̄1)

j=1 x2, j|x̄1]

k+n(x̄1)
.

Because E[Ân(x̄1)
j=1 x2, j|x̄1] = un(x̄1), this can be written as

E[x̄2|x̄1] =
kx̄1

k+n(x̄1)
+

n(x̄1)u

k+n(x̄1)
.

Moreover, because E(x̄2) = Ex̄1(E[x̄2|x̄1]) we get

E(x̄2) = Ex̄1(
kx̄1

k+n(x̄1)
)+Ex̄1(

n(x̄1)u

k+n(x̄1)
)

Let g(x̄1) =
1

k+n(x̄1)
. Because E(x̄1g(x̄1)) = E(x̄1)E(g(x̄1))+

cov(x̄1,g(x̄1)) and E(x̄1) = ku we get

Ex̄1(
kx̄1

k+n(x̄1)
) = kuE(g(x̄1))+Cov(x̄1,g(x̄1)).
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Note that

kE(g(x̄1)) = E(
k

k+n(x̄1)
) = 1�E(

n(x̄1)

k+n(x̄1)
)

Overall we get

E(x̄2) = u[1�E(
n(x̄1)

k+n(x̄1)
]

+Cov(x̄1,g(x̄1))+uE(
n(x̄1))

k+n(x̄1)
)

= u+Cov(x̄1,g(x̄1)).

Cov(x̄1,g(x̄1)) is negative (positive) whenever g(x̄1) is a
strictly decreasing (increasing) function of x̄1. Because
g(x̄1) = 1/(k + n(x̄1)), which is a strictly decreasing func-
tion of n(x̄1), Cov(x̄1,g(x̄1)) is negative whenever n(x̄1) is a
strictly increasing function of x̄1 and Cov(x̄1,g(x̄1)) is posi-
tive whenever n(x̄1) is a strictly decreasing function of x̄1.

Proof of Theorem 2: The belief after all payoffs observed in
both periods one and two, z2,n(z1,k), given the belief at the end
of period one (z1,k), is equal to

z1,k(1�b)n(z1,k) + x2,1b(1�b)n(z1,k)�1 + ...+bx2,n(z1,k).

The conditional expected value E[z2,n(z1,k)|z1,k] equals

z1,k(1�b)n(z1,k) +E[x2,1b(1�b)n(z1,k)�1 + ...+bx2,n(z1,k)|z1,k].

Because E[x2, j|z1,k] = u, this can be written as

E[z2,n(z1,k)|z1,k] = z1,k(1�b)n(z1,k) + (1� (1�b)n(z1,k))u.

Moreover, because E(Y ) = EX (E[Y |X ]), E[z2,n(z1,k)] equals

Ez1,k [z1,k(1�b)n(z1,k)]+Ez1,k [(1� (1�b)n(z1,k))]u.

Let g(z1,k) = (1 � b)n(z1,k). Because E(z1,kg(z1,k)) =
E(z1,k)E(g(z1,k))+Cov(z1,k,g(z1,k)), and E(z1,k) = u, we get

E[z2,n(z1,k)] = uE(g(z1,k))+Cov(z1,k,g(z1,k))+u(1�E(g(z1,k))

= u+Cov(z1,k,g(z1,k)).

Cov(z1,k,g(z1,k)) is negative (positive) whenever g(z1,k) is
a strictly decreasing (increasing) function of x̄1. Because
g(z1,k) = (1 � b)n(z1,k), which is a strictly decreasing func-
tion of n(z1,k), Cov(z1,k,g(z1,k)) is negative whenever n(z1,k)
is a strictly increasing function of z1,k and Cov(z1,k,g(z1,k)) is
positive whenever n(z1,k) is a strictly decreasing function of
z1,k.

Proof of Theorem 4: Without loss of generality we focus
on the case when m = 0. If m differs from zero, the distri-
bution of payoffs is identical to a constant, m, plus a ran-
dom variable with a normal distribution with mean zero. Let
S1 be the sum of the observed payoffs in period one. This
sum is equally likely to be positive or negative. Suppose

S1 = z > 0. It follows that the belief after the first period,
E[u|S1] = (1/k)S1s2

u
/(s2

u
+ s2

e
/k), is positive. Denote this

belief by b1, i.e., b1 = E[u|S1]. Note that b1 is a strictly in-
creasing function of S1. This positive belief turns into a neg-
ative belief after period 2 whenever

b2 =

1
k+n(b1)

(S1 +S2)s2
u

s2
u
+ s2

e

k+n(b1)

< 0,

i.e., whenever S2 <�S1. We seek the probability of this event
given the observed value of S1 = z, i.e., we seek Pr(S2 <
�S1|S1 = z).

Conditional on S1 = z, the sum of the payoffs in the sec-
ond period, S2, is a normally distributed random variable
with mean n(z)E(u|S1 = z) = n(z)zs2

u
/(s2

u
+s2

e
/k) and vari-

ance n(z)2
Var(u|S1 = z) + s2

e
n(z), where Var(ui|x1 = z) =

s2
u
s2

e
/(ks2

u
+s2

e
) (see Lindgren (1993, p. 289). It follows

that

Pr(S2 <�S1|S1 = z)=F(
�z�n(z)(z/k)s2

u
/(s2

u
+s2

e
/k)p

n(z)2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
n(z)

).

Altogether, the probability that a positive belief after period
one turns into a negative belief after period two equals

Pr(+!�) =
Z

z=+•

z=0
F(

�z�n(z)(z/k)s2
u
/(s2

u
+s2

e
/k)p

n(z)2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
n(z)

) f (z|z > 0)dz.

Because f (z|z > 0) = f (z)/P(z > 0) = f (z)/0.5, Pr(+!�)
equals

Z
z=+•

z=0
F(

�z�n(z)(z/k)s2
u
/(s2

u
+s2

e
/k)p

n(z)2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
n(z)

)2 f (z)dz, (2)

where f (z) is the density of the sum of the payoffs in the first
period which is a normal distribution with mean zero.

Suppose next S1 = z < 0 implying that E[u|S1] < 0. This
negative belief turns into a positive belief after period 2
whenever S2 > �z. Following the same reasoning as above
Pr(S2 >�S1|S1 = z) equals

1�F(
�z�n(z)(z/k)s2

u
/(s2

u
+s2

e
/k)p

n(z)2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
n(z)

).

Because 1�F(y) = F(�y), this can be written as

F(
z+n(z)(z/k)s2

u
/(s2

u
+s2

e
/k)p

n(z)2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
n(z)

).

Altogether, the probability that a negative belief after period
one turns into a positive belief after period two, Pr(�!+),
equals

Z
z=0

z=�•
F(

z+n(z)(z/k)s2
u
/(s2

u
+s2

e
/k)p

n(z)2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
n(z)

)2 f (z)dz.
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After the variable substitution, z =�y, this integral equals
Z

y=•

y=0
F(

�y�n(�y)(y/k)s2
u
/(s2

u
+s2

e
/k)p

n(�y)2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
n(�y)

)2 f (y)dy.

where we have used the fact that f (�y) = f (y).
We wish to show that Pr(+ ! �) > Pr(� ! +), which

requires us to show that

F(
�z�n(z)(z/k)s2

u
/(s2

u
+s2

e
/k)p

n(z)2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
n(z)

)>

F(
�z�n(�z)(z/k)s2

u
/(s2

u
+s2

e
/k)p

n(�z)2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
n(z)

),

over the positive domain of z. To do so, note first that the
derivative of

g(z,w) =
�z�wzs2

u
/(s2

u
+s2

e
/k)p

w2s2
u
s2

e
/(ks2

u
+s2

e
)+s2

e
w

,

with respect to w is

dg(z,w)

dw
=

z

2w

r
s2

ew(s2
e+s2

u+s2
ew)

s2
u+s2

e

,

which is positive whenever z > 0. Hence g(z,w) is an in-
creasing function of n(z). Because F(x) is a increasing func-
tion of x and n(z) is an increasing function of z, implying that
n2(z) > n2(�z), it follows that F(g(z,n(z)) > F(g(z,n(�z))
implying Pr(+!�)> Pr(�!+).
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