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Abstract 
A central canon in theory of mind research is that between the 
ages of three and four a drastic performance difference in 
children’s understanding occurs. However, the reason for the 
‘three to four shift’ has yet to be settled. One account, Theory 
of Mind Mechanism (ToMM) theory (Leslie, 1994), posits that 
change in inhibitory power can account for this difference. This 
is supported by a recent computational implementation of the 
theory, showing that differences in inhibitory power can 
account for age differences at an aggregate level (Wang, 
Hemmer, & Leslie, 2019). However, as Baker et al. (2016) 
point out, established findings are entirely based on group-
aggregated findings, yet computational and developmental 
processes do not take place in the ‘aggregated mind’. What 
remains largely unexplored is what happens at the level of the 
individual child. Here we combine the computational 
implementation of ToMM with data from Baker et al., 2016, 
who assessed longitudinal developmental change in Theory of 
Mind performance by repeated testing of individual child over 
the three-to-four shift period on standard ‘Sally and Anne’ false 
belief tasks, to obtain a cumulative record for each child. 
Specifically, we found that children’s age was not directly 
informative of developmental change in theory of mind 
reasoning. Instead, the main contributor to theory of mind 
performance at the individual learner level is inhibitory power.  

Keywords: Theory of mind; Computational Model; 
Developmental; Inhibition; Longitudinal 

Introduction 
The ability to attribute mental states and goals, or to infer 
other people’s mental contents is called theory of mind 
(ToM) and is considered essential for our social life. 
Importantly, this ability appears to emerge over early 
childhood. A robust empirical finding is that performance in 
the standard false belief task improves dramatically between 
the ages of three and four (Wellman, Cross, & Watson, 2001). 
However, the contributing factors underlying performance 
are still poorly understood, and theories are divergent. One 
view is that conceptual understanding changes between ages 
3 and 4, while another view is that inhibitory (executive) 
control skills improve over this period (Leslie, German, & 
Polizzi, 2005). Furthermore, one could easily anticipate that 
there would be individual differences in the development of 
ToM performance, but due to the one-trial nature of most 
empirical studies, individual differences have remained 
largely unexplored. In this paper, we seek to assess individual 
differences in inhibitory control both across children and 
within the individual child, using a unique longitudinal 

dataset in combination with a computational modeling 
approach. 

Over the last few decades, ToM has been a major topic of 
interest in the cognitive developmental literature. The 
standard false belief task (i.e., the Sally-Anne task) is the 
most commonly used measure of ToM (Baron-Cohen, Leslie, 
& Frith, 1985). In this task, an actor, Sally has a marble and 
hides it in Location A (e.g., a basket), then leaves the scene. 
After Sally’s departure, another actor, Anne, takes the marble 
from location A, and hides it in Location B (e.g., a box). 
Children are then asked: “When Sally comes back, where will 
she look for her marble?” The robust finding obtained from 
this paradigm is that the majority of typically developing 
children older than four are successful at predicting that Sally 
will look in Location A; correctly attributing the false belief 
to Sally. On the contrary, children younger than four usually 
fail, and predict that Sally will look in Location B, where the 
marble currently is, i.e., the true belief (Wellman et al., 2001; 
see Baillargeon, Scott, & He, 2010 for much earlier 
understanding of false beliefs).  

A number of theorists have argued that this difference is 
due to a lack of conceptual understanding for false beliefs 
before the age of four (e.g., Perner, Leekam, & Wimmer, 
1987; Gopnik & Astington, 1988). Others have argued for 
performance related explanations. This view proposes that 
the limited processing resources of  younger children mask 
an underlying intact conceptualization  of false beliefs (FB) 
(Leslie, 1994; Leslie, et al., 2005). Indeed, recent findings 
suggest that adding uncertainty to the child’s own belief 
about the location of the desired object, improves younger 
children’s performance (Setoh, Scott, & Baillargeon, 2016; 
Grosso et al., 2019; also see Wang & Leslie, 2016 for 
performance in non-verbal tasks). 

The  age of a child is a pervasive factor in development but 
enters into a computational process mediated by some other 
factor or factors rather than directly. Our model, drawing on 
Wang, Leslie, & Hemmer (2019) hypothesizes that age is 
mediated by increasing inhibitory power. 

The Role of Inhibition in Belief Desire Reasoning 
There has been wide interest in understanding how inhibition 
interacts with FB performance. One suggestion has been that 
inhibitory control plays a crucial role in theory of mind 
development by enabling children to entertain others’ mental 
states (e.g., Carlson, Moses, & Hix, 1998; Carlson & Moses, 
2001). Carlson and colleagues reported that performance in 
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inhibitory control tasks was significantly related to ToM 
performance. One study, by Sabbagh et al. (2006), compared 
performance of Chinese and US children in inhibitory control 
and ToM tasks. They found that although Chinese children 
were ahead of their US counterparts in inhibition, their ToM 
performance was not significantly different raising the 
possibility of that some unidentified cultural factor(s)  may 
influence the role of age-mediated inhibitory power. 
Nevertheless, individual differences in inhibitory control 
within the Chinese sample still predicted later ToM 
performance. Therefore, we seek to evaluate how children’s 
performance in ToM relates to their inhibitory control skills, 
both across individuals and also within an individual across 
time. 

Notably, these findings are in agreement with the 
predictions of a more specified theory, the Theory of Mind 
Mechanism (ToMM) (Leslie, 1994; Leslie et al., 2005). This 
theory posits that the ToM mechanism is on-line from infancy 
onward, and children already have a mature competence that 
would result in successful theory of mind reasoning. 
However, the standard task poses certain processing demands 
that are beyond the executive control resources of the young 
mind, specifically inhibitory control demands.  

 
ToMM + SP Model In the the Sally-Anne scenario, ToMM 
will spontaneously compute the true belief (TB), which is the 
object’s current location, and also the false belief (FB), which 
is based off of a crucial aspect; calculation of the 
visual/informational access (V) of the person. Then, these 
two belief candidates will be evaluated. Since beliefs ought 
to be, and generally are true (Dennett, 1989), the TB will be 
selected by default. In TB scenarios, this default serves well, 
and results in correct attributions. However, in a FB scenario, 
like the Sally-Anne, this prepotent response needs to be 
inhibited, so that the correct belief candidate (i.e., FB) can be 
selected as a response (i.e., an action prediction (A)). The 
inhibition (I) process is represented by the addition of the 
Selection Process (SP) to the ToMM (ToMM +SP). 

The ToMM + SP model is not only supported by 
experimental evidence (Friedman & Leslie, 2004; Setoh et 
al., 2016) but also by a computational approach used to 
quantitatively estimate the role of inhibition in ToM 
reasoning (Wang et al., 2019). In their model, Wang and 
colleagues used behavioral data from both low (LD) and high 
demand (HD) FB tasks to infer three- and four-year-olds’ 
inhibitory power. Their model captures inhibition’s role to 
account for the 3 to 4 ‘shift’, rather than a conceptual shift in 
understanding false beliefs. The current study will employ the 
same model as Wang et al. (2019). See the Modeling section 
for more details. 

Contribution of Longitudinal Data 
A characteristic of child data on ToM using the Sally-Anne 
task is that in a majority of studies each child only completes 
one trial. Thus, all analysis is at an aggregate level across 
children, obscuring individual differences and only allowing 
for a crude age assumption (with up to a year’s age difference 
between children assumed to be of the age group). This has 

substantially limited theorists in assessing individual 
performance over time. Since developmental change does not 
take place in the ‘aggregated brain’, change should be sought 
out in individual-level data. Baker et al. (2016) sought to 
resolve this problem by first collecting longitudinal data by 
following preschoolers between the ages of 3 to 5, and then 
implementing a novel Bayesian change-point analysis. Most 
notably, they found that the generally assumed ‘sudden 
insight’ shift in ToM understanding was only a minority 
among different patterns observed (9.6%), with the majority 
of children showing unstable records (44%).  

Their findings lay bare the fact that age itself is not directly 
predictive of ToM performance. What remains unanswered 
is what underlies the developmental change in ToM 
reasoning. The current study seeks to elucidate this question 
by combining the model developed by Wang et al. (2019) 
with the longitudinal data in Baker et al. (2016). We explore 
how the ToMM+SP model can be helpful not only in 
understanding the 3 to 4 ‘shift’ (ala Wang et al.), but more 
specifically how fluctuations in individual performance 
records over a temporal window could potentially be 
explained by changes in inhibitory power estimates, rather 
than by time (i.e., age) alone. 

Modeling 
The Data Set 
The data set for this model comes from Baker et al. (2016)’s 
longitudinal study, in which an extensive record of each 
individual child was reported. The main aim in their study 
was to test preschool children in the transitional period of 
theory of mind performance, in repeated trials over a course 
of unrestricted time (i.e., as long as possible).  

The final data set included 52 children from the US and 
UK. The preschoolers’ age at first testing session ranged from 
34 months to 62 months, with an average of 47 months 
(sd=6.3 months). Each testing session had no more than six 
weeks in between and occurred approximately monthly (for 
more details about data collection and analysis see Baker et 
al. 2016). The number of trials completed ranged from 10 to 
36, with an average of 21 testing sessions (sd=7.6). 

Subject Level Model 
Following convention, we adopt graphic models as a way to 
visualize structure. In the graphic model, circular nodes 
represent all variables of interest. Nodes for observed 
variables are shaded while nodes for latent variables are 
unshaded. Further, stochastic variables are differentiated with 
a single border and deterministic variables with double 
borders. Arrows indicate conditional dependencies. 

We implemented two models. Figure 1 gives the graphical 
model for the ‘subject level’ model, which assumes that 
inhibition (I) is fixed for each individual child—That is to say 
that each child’s inhibitory power is inferred from that child’s 
aggregate performance. Figure 4 gives the ‘temporal subject 
level’ model, which assumes that I for each child is allowed 
to vary over a temporal window. 

In the standard false-belief task, Sally wants her toy back, 
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and will go to the location where she believes the toy to be. 
Thus, Desire (D) is assumed to have a large prior probability, 
1 – ε. Following Wang et al., we 1) use an asymmetric beta 
prior on ε, with ε ~ Beta (1, 10), indicating that Sally is 
unlikely to change her desire (this is also the assumption used 
by Goodman et al., 2006); 2) assume the TB content one 
attributes to Sally is determined by one’s own knowledge of 
the world with probability W – γTB (W = 1 is change in the 
world or 0 is no change), and is the variations in how one may 
incorrectly represent the world; 3) assume the FB content is 
determined by Sally’s visual access to the world (V=0, or no 
access, in a false-belief scenario), with the uncertainty about 
FB given by the absolute value of (W•V - γFB). Following 
Goodman et al., we used asymmetric beta priors on γTB and 
γFB, with γTB ~ Beta (1, 5) and γFB ~ Beta (1, 5), indicating 
that one has an accurate representation of the world and 
others visual access. 

Under the assumption of ToMM + SP, to succeed in the 
standard false-belief task, one has to deploy sufficient 
inhibition to overcome the TB prior. Following Wang et al., 
I ~ Beta (α, β), where α ~ Uniform (1,100) and β ~ Uniform 
(1,100), indicating no prior assumptions about the shape of 
the beta distribution of I and to allow for a complete 
estimation of I from the observed data.  

The attributed belief (B) is the stronger belief between FB 
and TB with inhibition, i.e., the probability of B is the larger 
of the probability of the true belief with an inhibition (W - 
γTB - I) and the probability of the FB (absolute value of W•V 
- γFB). After the selection, B ~ Binomial (1,max (FB, TB-I)), 
one attributes either the belief that there is no change (B = 0) 
or the belief that there is a change (B = 1) to the agent, which 
coupled with desire determines action prediction (A). If the 
attributed desire is to retrieve the object (D = 1), prediction 

follows the attributed belief (B) and A ~ Binomial (1, B); if 
the attributed desire is ambiguous (D = 0), action prediction 
is random and A ~ Binomial (1, 0.5). See Wang et al. for the 
conditional probabilities amongst all variables. 

In sum, A is conditioned on the B, and D. B is determined 
by selecting between the TB and the FB through applying I. 
Having multiple trials for each subject’s A, we can now 
reverse the causal chain to infer to the cognitive parameter I 
that produced such performance for a given subject. This 
inference is crucial in terms of understanding, for the first 
time, individual differences in inhibitory power, and how 
these differences in I explain ToM performance. 

The models were implemented using WinBUGS (Lunn et 
al., 2000; Ntzoufras, 2009). Our results are based on drawing 
1,000 samples from two separate chains with a 100 burn-in 
period for each of the models. Convergence of the chains was 
assessed using the 𝑅" statistic (Brooks and Gelman, 1998). 

Subject Level Model Results Figure 2 shows the results for 
the Subject Level Model. In each graph, darker shades 
indicate older children. Because performance is bounded at 0 
and 1 the distributions are heavily skewed, therefore each dot 
represents the mode of a given measure. In Panel A, subject’s 
overall performance (calculated as proportion correct across 
trials) is plotted as a function of age in months at the start of 
testing. There was a moderate correlation between the age at 
first test, and overall success r(50) = .36, p = .007. As it can 
be seen in the figure, performance is quite scattered as a 
function of age. Similarly, in Panel C the mode of the 
posterior distribution of the inhibition parameter for each 
subject is plotted as a function of age at the start of testing. 
There was a moderate correlation between age and I, r(50) = 
.4, p = .003.  

Panel B can be thought of as a combination of Panel A and 
C, showing overall success as a function of inhibition. This 
shows how subjects’ ToM performance relates to estimated 
inhibitory power, r(50) = .98, p < .001, suggesting that the 
effect of age is mediated by inhibitory power. Indeed, 
differently (age) shaded nodes are scattered across the fitted 
line, indicating that some young children perform better than 
many older children, and this relationship can be captured by 
inhibition. 

In Panel D, the standard error (unbiased estimate of 
variability) is plotted as a function of overall performance by 
subject. This is to demonstrate that variance in a child’s trials 
alone is not informative, as the child that performed at the 
ceiling (100% correct), and the child performed at the floor 
(100% incorrect) produced the exact same variance, namely 
0. This is due to the dichotomous nature of data that the 
standard FB task yields, and the traditional inferential 
statistics based on averaged data alone cannot describe the 
richness of the longitudinal data used here. 

In Panel E, the standard error for I is plotted as a function 
of overall performance by subject. This demonstrates that 
variation in inhibition follows a non-linear pattern similar to 

 
Figure 1 The graphical model for ToMM+SP at the 
subject level. W: world, FB: false belief; TB: true belief; 
D: desire; A: action; V: visual access; I: inhibition. This 
‘subject level’ model assumes that inhibition (I) is fixed 
for each individual child but varies between children. 
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that of proportion correct. For very low performance 
variability is also low – suggesting that when a child fails, 
they do so consistently. Variation then increases across 

accuracy, such that as inhibition comes on line performance 
gets more unstable. Finally, for higher accuracy variation 
again decreases, such that once a child has inhibitory power 
performance becomes more stable. 

Figure 3 shows the mode posterior predictives for action 
prediction simulated by the model. This simulation can be 
thought as: if the same subject were to undergo the same 
number of trials, using the parameters inferred from the 
observed data, what would be the expected outcome in terms 
of their overall success. The mode of the posterior predictive 
distributions for each subject is indicated by the red shaded 
dots. The blue shaded dots indicate the observed proportion 
correct for each subject. It can be easily observed that the 
model predictions follow a similar trend to that of observed 
data, with slight underestimates for children with higher 
inhibitory power, and slight overestimates for children with 
lower inhibitory power. 

Temporal Subject Level Model 
Inplementing the subject level model we found only a 
moderate relationship between age and ToM performance 
(suggesting that age is not directly informative), but captured 
how individual differences in inhibitory power can account 
for ToM performance, regardless of subject age. Next, we 
sought to evaluate development within individual children—

 
Figure 2 Each dot represents an individual child’s value. Darker shades mean older age at the start of testing.  Lines in A, 
B, C indicate the best fitting line, with slope given in top right. A. y axis: proportion correct across all observed trials per 
child, x axis: children’s age at the start of testing. B. y axis: proportion correct across all observed trials per child, x axis: 
Mode of the Posterior distribution of inhibition for each child. C. y axis: Mode of the Posterior distribution of inhibition 
for each child, x axis: children’s age at the start of testing. D. Standard Error values for each subject’s performance. Y axis 
rescaled for visual clarity. E. Standard Errors for Inhibition. Y axis rescaled for visual clarity. 

 
Figure 3 Each dot represents an individual child’s 
value—lighter shades indicate younger age. Red shades 
represent the simulated Action prediction values by the 
model based on the inferred I estimates. Blue shades 
represent the proportion correct for the observed data. 
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namely, how does a child’s inhibitory control change over 
time? 
 It would be expected that, like any other cognitive process 
mechanism (i.e., executive contol) that mature with age, 
inhibition should follow a similar trend.We did not find 
evidence of a 3 to 4 ‘shift’ in the aggregate child, assuming 
fixed inhibition.  However, it is still possible that inhibitory 
control develops over the testing period of the individual 

child. The next model, the ‘temporal subject level’ model, 
aims to capture this change within each individual subject. 

Figure 4 shows the graphical model for the ‘temporal 
subject level’ model, which assumes that I for each child is 
allowed to vary over a temporal window. Using the same data 
set, we implement a ‘moving window’ that iterates over a set 
number of trials per subject. A depiction of how this window 
was implemented on data can be found in Figure 5. This 
window size was set to five for the current model, indicating 
that for each inference, the model received five data points 
for A. Because this is a first attempt to analyze inhibitory 
control’s change over time, the criterion for the least amount 
of trials that we could expect a change to be manifested was 
largely unknown. Since each trial was separated, on average, 
by a month, having the window size set to five seemed like a 
reasonable number that could capture change. 

 
Figure 4 The graphical model for implementing moving 
windows. This temporal subject level model assumes 
that I for each child is allowed to vary over a moving 
temporal window. 

 
Figure 5 Illustration of how data was selected by the use 
of a moving window of 5 trials. 

 
 
Figure 6 Each subplot has 10 subjects (except the last column). Age increases column-wise across plots. The same color 
across plots in each column is for the same subject. Top Panel – Shows the raw performance across windows. Middle Panel 
– Shows the mode inhibitory estimates across windows. Bottom Panel – Shows the mode action prediction. 
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Temporal Subject Level Model Results Figure 6 shows the 
results for the Temporal Subject Level Model assuming that 
I for each child is allowed to vary over a moving temporal 
window. The number of windows differed across subjects, as 
a function of number of trials (the number of windows = 
number of trials - window size + 1; where window size is set 
to 5). For the ease of examination and comparison, in each 
Panel lines represent 10 different subjects. From left to right, 
the age at first testing increases, such that the first Panel on 
the left shows the 10 youngest subjects, and the last Panel on 
the right is the 2 oldest subjects. The top row of Panels gives 
each subject’s success rate (proportion correct) for each 
moving window. By examining each line, children’s 
performance trajectory across windows can be followed. 
Crucially, performance across time is variable within a single 
subject as well as between subjects, pointing to a ‘stably 
unstable’ performance (Baker et al., 2016). The variant 
trajectories in FB performance again show how a crude age 
assumption could be masking individual differences both in 
inhibitory control and in ToM development. 

Crucial to the current study, the middle row in Figure 6 
depicts the inferred inhibition estimates. The structure of the 
graphs is the same as the top row, such that each line 
represents an individual child’s trajectory. There are a few 
important aspects of the inferred inhibition estimates across 
participants. 1) Individual trajectories are quite variant, with 
occasional increases and decreases within each individual, 2) 
individual children vary over time, and 3) some children 
show gradual increase in inhibitory power over time. 
Although these children are aging across trials, for the 
majority of the children neither their performance in the FB 
task, nor their inferred inhibitory power follows a stably 
increasing pattern.  Figure 6, bottom row shows the posterior 
predictives for action prediction. Notably, as in the ‘subject 
level’ model, action prediction follows inhibition, even 
across the multiple trials of an individual child. 

In Figure 7 the standard error for proportion correct and I 
is plotted as a function of proportion correct for a given 
moving window, for three representative children. Panel A is 
representative of a group of 17 children who showed poor 

performance even on later testing sessions (as indicated by 
darker colors), while exhibiting relatively low error on I—
meaning that children in this group failed consistently. Panel 
B represents a group of 12 children who showed improving 
performance over testing sessions. The inverted U-shape in 
both graphs illustrate the same pattern of variance and 
performance as seen in Figure 2 Panels D and E. Finally, the 
child in Panel C is representative of a group of 15 children 
who consistently demonstrated high accuracy. 

Discussion and General Conclusion 
Previously, inhibition’s role in ToM reasoning was captured 
with group averaged data (Wang et al., 2019), accounting for  
the differences in performance between three- and four-year-
olds. Following the same Bayesian modeling approach, 
without any added complexity to the model, we demonstrated 
how individual differences in inhibitory power can account 
for the ToM performance, rather than subjective age. 

Specifically, we used a novel and rich dataset. This enabled 
us to capture, first, how performance in ToM reasoning 
differs among individual children as a function of inhibition, 
and second, even much more importantly, how differences 
within a child can directly predict ToM performance over 
time. We observed that when the overall success is viewed as 
a function of age, there is only so much that this relationship 
can explain. The moderate relationship between age and 
performance is itself not directly predictive of ToM 
performance, but is instead mediated through the ability to 
exert executive control (i.e., inhibitory power). Moreover, the 
cognitive parameter I is strongly predictive of performance 
both within and across individuals. This is in line with the 
predictions of ToMM+SP model (Leslie et al., 2005), which 
proposes that the traditional FB tasks require executive 
control skills, like inhibitory control, to be successful in 
‘passing’ the task, and this is a compelling explanatory factor  
in preschooler performance, rather than an account that 
proposes only a lack of conceptual understanding for FB in 
younger children (e.g. Perner et al., 1987).  

We modeled a unique dataset comprising extensive 
cumulative records of single children in a longitudinal change 
point study reported in Baker, Leslie, Gallistel, and Hood, 

 
Figure 7 Standard Error values for proportion correct and inhibition for three representative children. Darker shades mean 
later testing sessions. X axis: Proportion correct for a given moving window. 
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2016. As a first step, we  examined how much Inhibitory 
power varied across individuals in this dataset. A substantial 
difference between the modeling in Wang et al. (2019), and 
ours is the nature of this data. In in the Subject Level model 
we modeled each child separately, allowing us to infer 
different inhibitory power values per case.  

Further tests of the current model should include 
longitudinal findings in i) low inhibitory demand versions of 
the FB task, and ii) an independent inhibitory control 
measure. Due to the unavalability of such data, it was not 
possible to test the current model to observe how well it 
predicts performance for an individual across time with a low 
inhibitory demand version. However, although still using 
aggregate data coming from three and four-year-olds, Wang 
et al. (2019) showed that the same model was also successful 
in accounting for, and predicting, performance in the low 
inhibitory demand version of the standard FB task for a given 
age group, namely three and four. After future longitudinal 
research is accomplished, testing the current model with 
another rich dataset would greatly help in characterizing the 
individual development trajectories in ToM development, 
and how inhibitory control plays a role in different versions 
of the standard task. 

The work presented here is a first ever computational 
analysis of individual differences in children’s theory of mind 
development. Our unique modeling approach has allowed us 
to infer coginitive parameters central to ToM development, 
and predict new individual performance trajectories. The 
combination of longitudinal single case data and 
computational modeling shows how much our understanding 
of the true nature of ToM development, and ‘development’ in 
general can be expanded, and how such methodology can 
shed light upon unanswered questions in cognitive 
developmental science. 
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