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Abstract

When deciding how to allocate cognitive control to a given
task, people must consider both positive outcomes (e.g.,
praise) and negative outcomes (e.g., admonishment). How-
ever, it is unclear how these two forms of incentives differen-
tially influence the amount and type of cognitive control a per-
son chooses to allocate. To address this question, we had par-
ticipants perform a self-paced incentivized cognitive control
task, varying the magnitude of reward for a correct response
and punishment for an incorrect response. Formalizing control
allocation as a process of adjusting parameters of a drift diffu-
sion model (DDM), we show that participants engaged in dif-
ferent strategies in response to variability in reward (adjusting
drift rate) versus punishment (adjusting response threshold).
We demonstrate that this divergent set of strategies is optimal
for maximizing reward rate while minimizing effort costs. Fi-
nally, we show that these dissociable patterns of behavior en-
able us to estimate the motivational salience of positive versus
negative incentives for a given individual.

Keywords: cognitive control; reward; punishment; decision-
making; drift diffusion model

Introduction
When performing mentally demanding tasks, people need to
decide how to deploy limited cognitive resources to achieve
their goals. People are motivated to different degrees by the
prospect of achieving a positive outcome versus avoiding a
negative outcome (Lewin, 1935; Atkinson & Feather, 1966).
For example, some students study hard to get praised by their
parents while others do so to avoid embarrassment. The over-
all salience of these incentives will determine when and how a
given person decides to invest cognitive control (Botvinick &
Braver, 2015), including when they choose to disengage from
effortful tasks (Wrosch, Scheier, Carver, & Schulz, 2003).
While a great deal is known about how people adjust cogni-
tive control in response to varying levels of potential reward
(Yee & Braver, 2018), much less is known about how they do
so in response to varying levels of potential punishment, nor
what types of control allocation strategies are most adaptive
under these two conditions.

Previous research has examined how control allocation
varies as a function of the reward for performing well at a
task, and demonstrated that participants generally perform
better when offered greater reward (Braver et al., 2014; Krebs
& Woldorff, 2017). For instance, when the reward for a cog-
nitive control task (e.g., Stroop) is contingent on both speed
and accuracy, participants are faster and/or more accurate
as potential rewards increase (Krebs, Boehler, & Woldorff,

2010; Chiew & Braver, 2016; Froemer, Lin, Dean Wolf, In-
zlich, & Shenhav, 2020). However, as this example demon-
strates, different forms of control adjustments can produce
different types of performance improvements (e.g., differen-
tially prioritizing speed vs. accuracy). Past work has not
tested whether the same types of control adjustment are fa-
vored when participants are incentivized to avoid poor per-
formance versus achieve good performance.

To understand how people vary their control allocation
across different forms of incentives, it is equally critical to
understand why they do so. Recent theoretical work provides
guidance in addressing this question. For instance, normative
accounts of effort allocation propose that animals and humans
vary the intensity of their effort to maximize their net reward
per unit time (reward rate; Niv, Daw, Joel, & Dayan, 2007;
Boureau & Dayan, 2011; Otto & Daw, 2019). Applying such
theories to the specific domain of mental effort (i.e., cogni-
tive control) allocation, the Expected Value of Control (EVC)
model propose that people allocate the type and amount of
cognitive control that maximizes the overall rate of expected
rewards while minimizing expected effort costs (Shenhav,
Botvinick, & Cohen, 2013; see also Manohar et al., 2015).

The EVC model has been successful at accounting for how
people vary the intensity of a particular type of control to
achieve greater rewards (Musslick, Shenhav, Botvinick, &
Cohen, 2015; Lieder, Shenhav, Musslick, & Griffiths, 2018),
but limitations in existing data have prevented it from describ-
ing how the type of control being allocated should depend on
the type of incentive. Aside from the dearth of research on
how people adjust control to positive versus negative incen-
tives, a second critical limitation is that most existing stud-
ies examine how performance varies over a fixed set of trials
(e.g., 200 total trials that must be completed over the course
of an experiment). An appropriate test of normative predic-
tions of the reward rate maximization inherent to EVC (and
similar models) requires examining how performance varies
when participants are allowed to perform as much or as little
of the task as they would like over a fixed duration.

To address these open questions, we developed a novel
task that measures cognitive control allocation over a fixed
time interval. Participants performed a control-demanding
task under different incentive types (reward vs. punishment)
and incentive magnitudes (small vs. large), and we measured
how participants adapted their cognitive control (e.g., prior-
itizing speed, accuracy, or both) to optimize their subjective

2325
©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).



reward rates. People demonstrated distinct patterns of cogni-
tive control allocation for rewards versus punishments. With
increasing reward, participants were faster while maintain-
ing the same level of accuracy (completing more trials over-
all), whereas with increasing punishment they were overall
more accurate but also slower (completing fewer trials over-
all). To provide a normative account of these interactions,
we merged properties of existing models of reward rate op-
timization and control allocation (Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006; Manohar et al., 2015; Musslick et
al., 2015; Simen et al., 2009), modeling different types of
control allocation as adjustments of different parameters in
a Drift Diffusion Model (DDM; Ratcliff & McKoon, 2008).
We show both normatively and empirically that evidence ac-
cumulation rate (a potential proxy for attentional focus) se-
lectively increases with increasing potential reward, whereas
response thresholds selectively increase with increasing po-
tential punishment. Finally, we used this modified reward
rate model to estimate the individual differences in sensitiv-
ity to reward and punishment based upon unique behavioral
profiles, providing a compelling novel approach for inferring
how people evaluate costs and benefits when deciding when
and how much to allocate cognitive control.

Incentivized Cognitive Control Task
We designed a new task to investigate cognitive control al-
location in a self-paced environment (Figure 1). During this
task, participants are given fixed time intervals (8-12s) to per-
form a cognitively demanding task (Stroop task), in which
they have to name the ink color of a color word. Partic-
ipants could perform as many Stroop trials as they wanted
during each interval, with a new trial appearing immediately
after each response. Since the duration of intervals was varied
across the session, participants were discouraged from devel-
oping a trial-counting strategy (e.g., performing 10 responses
per interval).

Participants were instructed that they would be rewarded
for correct responses and penalized for incorrect responses.
At the start of each interval, a visual cue indicated the level
of reward and punishment associated with their responses in
the subsequent interval. There are four distinct conditions in
the experiment: high-reward/high-punishment (+10¢, -10¢),
high-reward/low-punishment (+10¢, -1¢), low-reward/high-
punishment (+1 ¢, -10¢), and low-reward/low-punishment
(+1¢, -1¢) (Figure 1). During the interval, participants could
complete as many Stroop trials as they would like. Be-
low each Stroop stimulus, a tracker indicated the cumulative
amount of monetary reward within that interval. After each
interval, participants were informed how much they earned.
The experiment was implemented within the PsiTurk frame-
work (Gureckis et al., 2016) and the data was collected on the
Mechanical Turk platform.
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Figure 1: Task paradigm. At the start of each interval, a
visual cue indicates the level of reward and punishment for
that interval. Participants can complete as many Stroop trials
as they want within that interval. The cumulative reward
over a given interval is tracked at the bottom of the screen.
Correct responses increase this value while incorrect
responses decrease this value. Participants are told how
much they earned at the end of each interval. The upper right
inset shows the cues across the four conditions.

Behavioral Results
We collected data from 36 participants, but four participants
were excluded due to poor performance (with mean accuracy
below 60% or mean reaction time outside of 3 standard devi-
ations of the mean). The final dataset consisted of 32 partici-
pants (10 F; Age: 35±10 years).

Table 1: Mixed model results for normalized correct
responses

Predictors Estimates t df p
Intercept 1.14 34.03 32 < 0.001
Age −0.04 −0.69 29 0.265
Female - Male 0.08 2.13 29 0.044
High - Low
Punishment −0.03 −4.73 29 < 0.001
High - Low
Reward 0.04 5.606 30 < 0.001
Mean
Congruency −0.02 −3.586 36 < 0.001
Reward×
Punishment 0.01 2.168 41 0.011

The primary measurement of task performance is the num-
ber of correct responses within each interval divided by the
duration of the interval (i.e., normalized correct responses).
We fitted a linear mixed model (lme4 package in R; Bates,
Mächler, Bolker, & Walker, 2015) to estimate the normalized
correct responses as a function of contrast-encoded reward
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and punishment levels (High Reward - Low Reward, High
Punishment - Low Punishment) as well as their interaction,
controlling for age, gender and congruency effect, and using
models with maximally specified random effects (Barr, Levy,
Scheepers, & Tily, 2013) (Table 1).
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Figure 2: Behavioral results. Effect of reward and
punishment on a) the number of correct responses completed
in an interval (normalized by interval duration); b) trial-level
accuracy and c) trial-level response time (correct responses
only). ***: p < 0.001. Error bars reflect s.e.m..

Participants completed more trials with increasing poten-
tial reward, and fewer trials with increasing potential punish-
ment (p < 0.001; Figure 2a). We observed a significant inter-
action between reward and punishment (p = 0.011) whereby
the effect of reward level on performance was enhanced in
high-punishment compared to low-punishment intervals. We
did not find significant interaction between reward or penalty
and mean congruency.

Additional analyses revealed that rewards versus punish-
ments exerted distinct influences on speed versus accuracy.
Accuracy was significantly higher with increasing potential
punishment (p < 0.001), but did not vary with potential re-
ward (p = 0.932; Figure 2b). Response time, on the other
hand, did vary significantly with both types of incentives,
but in opposite directions (Figure 2c). Consistent with the
differences trial completion rate by condition (Figure 2a),
participants were faster to respond with increasing reward
(p< 0.001) but slower to respond with increasing punishment
(p < 0.001). Together, these data reveal that participants ap-
plied distinct strategies under different incentive conditions.

Reward Rate Optimal Control Allocation:
Normative Predictions

An existing reward-rate optimization model shows that, when
deciding which strategy to apply in a given task, the norma-
tive estimate of reward rate will critically depend on how an
individual weighzs the benefit of the reward for a correct re-
sponse versus the cost of being punished for an error (Bogacz
et al., 2006; Krueger et al., 2017). This subjective reward rate
RR is expressed as

RR =
R× (1−ER)−P×ER

DT +NDT
(1)

where ER is error rate, DT is decision time, and NDT is
non-decision time (e.g., time to execute a motor response).
R and P indicate the weights for reward and punishment,
respectively. The decision procedure in Stroop task can be
characterized as a drift diffusion process in which evidence is
accumulated toward one response until the accumulated evi-
dence reaches a threshold (Musslick et al., 2015). The expec-
tations of ER and DT depends on the drift rate (the speed of
evidence accumulation) and threshold (Bogacz et al., 2006).

To correctly respond on a Stroop trial (i.e., name stimulus
color), participants need to recruit cognitive control to over-
come the automatic tendency to read the word. We first as-
sume that participants performing our task choose between
adjusting two strategies for achieving this goal: (1) increasing
attentional focus on the Stroop stimuli (resulting in increased
drift rate toward the correct response), and (2) increasing their
threshold to require more evidence accumulation before re-
sponding. Second, we assume that participants seek to iden-
tify the combination of these two DDM parameters that maxi-
mizes reward rate. Third, we assume that increasing drift rate
incurs a cost, which participants seek to minimize. The inclu-
sion of this cost term is motivated by previous psychological
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and neuroscientific research (Shenhav et al., 2017) and by its
sheer necessity for constraining the model from seeking im-
plausibly high values of drift rate (i.e., as this cost approaches
zero, the reward rate maximizing drift rate approaches infin-
ity). A quadratic cost term was chosen based on previous
work (v2; Manohar et al., 2015; Musslick et al., 2015) and ad-
ditional analyses showing that this outperforms a linear term
(not shown here)

RR =
R× (1−ER)−P×ER

DT +NDT
−E× v2 (2)
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Figure 3: (a) Theoretical optimal threshold and drift rate
under different pairs of normative values of reward (R) and
punishment (P) weights. Each dot indicates the optimal
combination of drift rate and threshold under a pair of R and
P. Darker colors represents larger values of reward or
penalty. (b) Observed combinations of average drift rate and
threshold for the four experimental conditions (based on
HDDM fits) follow the reward and punishment gradients
predicted by our model. Each dot represents the combination
of empirical values of R and P. Error bars reflect s.d..

Under the assumption that participants implement adaptive
cognitive strategies to maximize RR, we can generate predic-
tions regarding the optimal settings for drift and threshold un-
der different reward (R) and punishment (P) conditions. For
different R and P values, we numerically identified the drift
rate and threshold pair that would maximize reward rate (Fig-
ure 3a). In this model, the optimal drift rate and threshold is

determined by the ratios between R, P and E. For these calcu-
lations, the magnitude of effort costs is held constant (E=1),
putting reward and punishment into units of effort.

As R increases, the model suggests that the optimal strat-
egy is to increase drift rate and reduce threshold. As P in-
creases, the optimal strategy is to primarily increase thresh-
old and slightly increase drift rate. These findings indicate
that the weights for rewards and punishments jointly modu-
late the optimal strategy for allocating cognitive control, and
that these two types of incentives focus on distinct aspects of
the strategy. Specifically, they predict that that people will
tend to increase drift rate the more they value receiving a re-
ward for a correct response, whereas threshold will be modu-
lated as a function of how much they value receiving a reward
for a correct response (decreased threshold) and receiving a
punishment for an incorrect response (increased threshold).

Reward Rate Optimal Control Allocation:
Empirical Evidence

We next sought to test whether performance on our task was
consistent with the predictions of our normative model. We fit
accuracies and RTs across the different task conditions with a
Hierarchical Drift Diffusion Model (HDDM) (Wiecki, Sofer,
& Frank, 2013), which allowed us to derive estimates of how
a participant’s drift and threshold varied across different lev-
els of reward and punishment.
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Figure 4: Fitted coefficients of reward, punishment,
reward/punishment interaction and congruency on a) drift
rate and b) threshold. *p < 0.05; **p < 0.01; ***p < 0.001.
Error bars reflect s.d..
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Consistent with predictions of our reward-rate-optimal
DDM, drift rate increased with larger rewards as well as
larger punishment (Figures 3b and 4). This suggests that par-
ticipants were motivated to increase their overall attention al-
location with increasing incentive magnitude. Also consis-
tent with our normative predictions, we found that reward
and punishment exhibited dissociable influences on thresh-
old, with higher rewards promoting a lower threshold and
higher punishment promoting a higher threshold. These find-
ings control for the effect of congruency on DDM parame-
ters (with incongruent trials being associated with lower drift
rate and higher threshold). Thus, our empirical findings are
consistent with the prediction that participants are optimizing
reward rate, accounting for potential rewards, potential pun-
ishments, and effort costs.

Model-Based Estimates from Behavior Recover
Original Values of Reward and Punishment

Participants’ subjective valuation of incentives is a latent vari-
able that must be inferred from task performance. Since
we have a process model for mapping incentives onto con-
trol configuration (i.e., reward-rate optimization), we can
’reverse-engineer’ participants’ subjective valuation of re-
ward and punishment based on their DDM parameters (e.g.,
drift rate and threshold; Figure 3b). Having identified
condition-specific settings of drift rate and threshold for each
participant, and moreover showing that they fit a qualitative
pattern consistent with prediction of normative control adap-
tation, we can further use these DDM estimates to infer indi-
vidualized subjective weights of reward value (R) and punish-
ment value (P) for each of the four task conditions. Critically,
this parameter recovery validates this approach for inferring
individualized latent subjective valuation of reward and pun-
ishment incentive effects on adaptive cognitive control.

Here, we used performance-driven model estimates to ‘re-
verse engineer’ the individualized subjective weights of re-
ward (R) and punishment (P) across the four task conditions.
For each task condition, we first estimated the drift rate (v)
and threshold (a) for each individual. We then calculated
the partial derivatives of reward rate (RR) with respect to
these condition-specific estimates of v and a. By setting these
derivatives to 0 (i.e., optimizing the reward-rate equation), we
can calculate the subjective weights of reward (R) and punish-
ment (P) that make the estimated (v,a) the optimal strategy.
This workflow can be summarized as follows:

DDM→ (v,a)→


∂RR
∂v = 0

∂RR
∂a = 0

→ (R,P)optimal

A repeated-measures ANOVA on our estimates of R and P
(log-transformed) revealed a main effect of incentive magni-
tude (F(1,251) = 15.96, p < 0.001), with larger R on high-
reward intervals (t(63) = 7.59, p < 0.001) and larger P on
high-punishment intervals (t(63) = 6.24, p < 0.001). We also

observed a main effect of valence, such that estimates of
P were higher than estimates of R (F(1,251) = 15.96, p <
0.001). The ANOVA also revealed a significant interac-
tion between valence and magnitude (F(1,251) = 10.28, p =
0.0015), such that P estimates differed more across punish-
ment levels than R estimates differed across reward levels
(Figure 5). These asymmetric effects of rewards and punish-
ment on reward rate are consistent with research on loss aver-
sion (Kahneman & Tversky, 1979) and error aversion (Hajcak
& Foti, 2008).
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Figure 5: Log transformed weights for a) high vs low
reward and b) high vs low punishment. We observed a
significant interaction between valence and magnitude, such
that the difference in the log weights between high and low
punishment is significantly higher than the difference
between high and low reward. Error bars reflect s.e.m..

Discussion
We investigated common and divergent influences of reward
versus punishment on cognitive control allocation, and the
normative basis for these incentive-related control adjust-
ments. Participants performed a self-paced cognitive control
task that offered the promise of monetary rewards for cor-
rect responses and monetary losses for errors. As reward
increased, they responded faster and were therefore able to
complete more trials as reward. As punishment increased,
they responded slower and therefore completed fewer trials
but were overall more accurate. We showed that these dif-
ferent patterns of incentive-related performance could be ac-
counted for by a combination of two distinct strategies (ad-
justment of the strength of attention vs. response threshold),
which are differentially optimal (i.e., reward rate maximiz-
ing) in response to these two types of incentives.

Our findings build on past research on reward rate max-
imization, which has shown that people alter their behavior
and their cognitive strategies to maximize their subjective re-
ward per unit time (Bogacz et al., 2006; Lieder et al., 2018;
Otto & Daw, 2019). Our current experiment builds on this
research in several important ways. First, we apply it to per-
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formance in a self-paced variant of a cognitive control task.
Second, we model and experimentally manipulate the incen-
tive value for a correct versus incorrect response. Third, to
account for well-known costs of cognitive effort (Shenhav et
al., 2017), we modeled such effort costs as scaling quadrat-
ically with changes in drift rate (Manohar et al., 2015). Fi-
nally, we used our model to perform reverse inference on our
data, identifying the subjective weights of incentives that gave
rise to performance on a given trial.

Our theoretical and empirical findings show that adjust-
ments of threshold and drift can vary as a function of the task
incentives, which then drive adaptive adjustments in cognitive
control. Notably, achieving this result required us to build in
the assumption that increases in drift rate incur a cost. With-
out this assumption – which is grounded in past research on
mental effort (Manohar et al., 2015; Shenhav et al., 2017) –
it would always be adaptive for an individual to maintain a
maximal drift rate across conditions, as this would guarantee
consistently fast and accurate responding. However, while it
is clear that some form of cost function is necessary to con-
strain drift rate, follow-up work is needed to further charac-
terize that function and the extent of its nonlinearity. We have
also left open the question of whether and how a cost function
applies to increases in response threshold. While there is rea-
son to believe that threshold adjustments may incur analogous
effort costs to attentional adjustments, in part given the con-
trol allocation mechanisms they share (Musslick et al., 2015),
threshold adjustments carry an inherent cost in the form of
a speed-accuracy tradeoff. It therefore wasn’t strictly nec-
essary to incorporate an additional effort cost for threshold
in the current simulations, though it is possible such a cost
would have further improved model predictions. Future work
will investigate the boundary conditions of when a cost func-
tion can provide additional explanatory power to incentivized
cognitive control.

Our combined theoretical and empirical approach enabled
us to quantify the value participants placed on expected re-
wards and punishments, based only on their task perfor-
mance. Our results showed that people weighed punishments
more heavily than rewards, despite the currency being equiv-
alent (i.e., amounts of monetary gain vs. loss). This finding
is consistent with past work on loss aversion (Kahneman &
Tversky, 1979), and more generally with the findings that dis-
tinct neural circuits are specialized for processing appetitive
versus aversive outcomes (Bissonette, Gentry, Padmala, Pes-
soa, & Roesch, 2014; Pessiglione & Delgado, 2015). Crit-
ically, the current approach and findings hold promise for
research into individual differences in sensitivity to rewards
versus punishments. Not only can this method help to in-
fer these sensitivity parameters for a given individual implic-
itly (i.e., based on task performance rather than self-report), it
can also provide valuable insight into the cognitive and com-
putational mechanisms that underpin adaptive control adjust-
ments, and when and how they become maladaptive (e.g., in
mood and anxiety disorders).

Overall, our task captured the influence of reward and pun-
ishment on self-paced cognitive control allocation. We in-
vestigated how individuals adjust their strategy for allocating
cognitive control in a self-paced setting, as well as how mon-
etary incentives are translated into subjective values to influ-
ence task performance. These results provide an important
foundation for the computational mechanisms underpinning
divergent strategies for optimizing reward rate. We present
a novel adaptation to an existing reward-rate optimization
model to account for the cost of cognitive control in moti-
vated task performance. This is the first demonstration of a
quantitative approach to account for reward, punishment, and
effort cost on the adaptation of cognitive control, which has
also been additionally validated by experimental data. These
findings lend support to the Expected Value of Control model
(Shenhav et al., 2013) and, critically, provide greater speci-
ficity to the computational and cognitive mechanisms under-
lying adaptive cognitive control.
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