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Abstract

Deep neural networks (DNNs) are becoming increasingly pop-
ular as a model of the human visual system. However, they
show behaviours that are uncharacteristic of humans, including
the ability to learn arbitrary data, such as images with pixel val-
ues drawn randomly from a Gaussian distribution. We investi-
gated whether this behaviour is due to the learning and memory
capacity of DNNs being too high for the training task. We re-
duced the capacity of DNNs by incorporating biologically mo-
tivated constraints – an information bottleneck, internal noise
and sigmoid activations – in order to diminish the learning of
arbitrary data, without significantly degrading performance on
natural images. Internal noise reliably produced the desired
behaviour, while a bottleneck had limited impact. Combining
all three constraints yielded an even greater reduction in learn-
ing capacity. Furthermore, we tested whether these constraints
contribute to a network’s ability to generalize by helping it de-
velop more robust internal representations. However, none of
the methods could consistently improve generalization.
Keywords: deep learning; biological details; memorization;
generalization; internal noise; bottleneck

Introduction
Not only do deep neural networks (DNNs) perform impres-
sively across a range of visual tasks (He, Zhang, Ren, & Sun,
2015; Schroff, Kalenichenko, & Philbin, 2015), they are also
becoming increasingly popular among vision researchers as
models of the primate visual system (Kriegeskorte, 2015).
This is due to the inspiration these networks draw from the
architecture of the primate brain, combined with multiple
studies showing that deep neural networks trained to clas-
sify images achieve high scores in predicting neural activity
of primates exposed to the same stimuli (Yamins et al., 2014;
Khaligh-Razavi & Kriegeskorte, 2014). However, DNNs also
display some behaviours which are both undesirable in real-
world applications, and also highly uncharacteristic of human
behavior. Examples include adversarial images (Szegedy et
al., 2013) – artificially created stimuli that networks misclas-
sify in ways that humans never would.

Another example of strange behaviour in neural networks
is their ability to learn any arbitrary data. Zhang, Bengio,
Hardt, Recht, and Vinyals (2017) trained DNN models on a
standard classification task, but used either synthetic, ’ran-
dom’ images, with pixel values randomly drawn from a Gaus-
sian distribution, or natural images, where each example is ar-
bitrarily paired with a random output label. The authors point
out that in both conditions there are no class-specific patterns,
yet the networks learn the data perfectly. They conclude that

the networks must be memorizing every single example in
order to achieve perfect accuracy. This memorization of un-
structured data is in stark contrast with how humans and pri-
mates learn to categorize objects. Learning to classify a data
set of 50,000 random ‘noisy’ images is out of reach for hu-
man observers. The human visual system is specialized at
detecting structural regularities in the environment (Witkin &
Tenenbaum, 1983), whereas noise images represent the com-
plete opposite – unstructured data, with no correlations be-
tween pixels or examples. While the DNNs in Zhang et al.
(2017) do take longer to learn arbitrary data compared to nat-
ural stimuli, the amount of extra training required is a single-
digit scaling factor away from the number of steps required
to learn a naturalistic data set, such as CIFAR10 (Krizhevsky,
Nair, & Hinton, 2009).

We explore whether the ability of DNNs to learn arbitrary
data sets is due to their overly large capacity relative to the
tasks they’re trained on. For a model to be seriously consid-
ered for investigating biological vision it should be able to
perform the tasks humans and other animals can do, while at
the same time failing when animals can’t succeed either. The
aim of this investigation is to bring deep neural networks’ and
humans’ behavior closer together by reducing the capacity of
DNNs to learn arbitrary data, without hindering categoriza-
tion performance on natural images. To accomplish this, we
introduce three biologically motivated constraints, which are
either inspired by the primate brain, or use mechanisms anal-
ogous to observed biological phenomena.

First, we consider the idea of an information bottleneck
(Tishby, Pereira, & Bialek, 2000) – the possibility that, by re-
ducing the amount of information passed from some layer in
the neural network to the next, (for example by narrowing the
channel capacity), only essential information would be con-
veyed and any irrelevant details would be discarded. When
regular patterns shared by all category members can be dis-
covered, this could lead to developing more robust represen-
tations. Information bottlenecks could, in fact, play a pivotal
role in reducing stimulus complexity to allow efficient pro-
cessing in the perceptual system (Essen, Olshausen, Ander-
son, & Gallant, 1991). On the other hand, if no common pat-
tern can be detected, like in the case of random pixel images,
then a bottleneck might have a larger impact on network per-
formance. Lindsey, Ocko, Ganguli, and Deny (2019) use the
theory of information bottlenecks to show that reducing the
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number of convolutional filters in the early layers of a con-
volutional neural network can create representations similar
to the receptive fields found in the human retina and primary
visual cortex.

Another biologically inspired intervention we implement is
the concept of internal noise, also referred to as ‘neural vari-
ability’. Computations in the brain are not fault-proof and it
is a long-standing observation that presentation of the same
stimulus can often result in different neural response patterns
(Stein, Gossen, & Jones, 2005). This variability can be ob-
served at multiple spatial and temporal scales, caused by en-
vironmental factors or specific cell properties. The largest
source of neuronal noise is synaptic, produced by small vari-
ation in neurotransmitter release, which can have a signifi-
cant net effect on the behavior of post-synaptic cells (Stein et
al., 2005). Adding internal Gaussian noise to the activation
values of hidden units in a neural network is also a known
regularization technique in machine learning.

Finally, we consider the role of the activation function on
a neural network’s capacity. Typically, modern deep learn-
ing models use rectified linear (ReLu) units, the activity of
which is thresholded at zero for negative values and increases
linearly for positive ones. We contrast this with the Sigmoid
activation function, which is often encountered in older, con-
nectionist models of cognitive processes, as well as many
neurophysiological models of neural population dynamics
(Wilson & Cowan, 1972). While there is an ongoing debate
about the biological plausibility of Sigmoid versus ReLu ac-
tivation functions (see Glorot, Bordes, & Bengio, 2011), we
focus on their relative capacities for representing information.
The activation of rectified units can grow as large as needed,
and their representational capacity is only limited by the de-
gree of precision imposed by the numeric data. Units using
the sigmoid activation function, on the other hand, have their
output values limited within the range 0−1 and therefore pro-
vide a natural constraint on the representational capacity of
these units.

Our results suggest that the considered mechanisms mod-
ulate the learning of unstructured data by lowering the net-
works’ capacity to memorize. In order to gain further in-
sight into how the constraints affect the internal states of the
network, we investigated whether models with constrained
capacity learn more robust, invariant representations. We
evaluated generalization performance on a modified data set,
created using image manipulations which have not been ob-
served during training. Geirhos et al. (2018) have previously
shown that humans exhibit a far greater robustness to such
manipulations compared to deep convolutional neural net-
works. This task adds another challenge for the constrained
deep neural networks to match human behaviour.

Methods
Models and training procedure
All experiments were conducted using two model architec-
tures, small-inception and small-alexnet, adapted from

Figure 1: Examples of manipulated images from Experiment
2. Top: uniform noise; Bottom: salt and pepper noise

Zhang et al. (2017)1. Both are convolutional neural networks,
with a similar number of trainable parameters, differing pri-
marily in the implementation of inception modules and a
greatly increased network depth in small-inception.

We trained models with a varying amount of internal Gaus-
sian noise, with or without a bottleneck, and using either
ReLU or sigmoid hidden unit activation functions. All ex-
periments use four realizations with different random seeds
for each combination of these hyperparameters to improve
robustness and generalization of the results.

All networks were implemented and trained using the
tensorflow.keras library for python2. Models were trained
for 100 epochs using a batch size of 128. The optimizer used
for training was Stochastic Gradient Descent (SGD), with an
initial learning rate of 0.1 for small-inception and 0.01
for small-alexnet and scheduled learning rate decay rate
of 0.05 every epoch.

Materials
The networks were trained for image classification using ei-
ther the CIFAR10 (Krizhevsky et al., 2009) image data set,
or on a random-image data set. CIFAR10 consists of 10 ob-
ject categories, with 5,000 training and 1,000 test examples
per category, for a total of 50,000 stimuli. Unless otherwise
stated, we use a matching number of classes and examples
of random data in all experiments. The random-image data
was created by sampling pixel values from a Gaussian distri-
bution with a mean and standard deviation matching those of
CIFAR10, calculated independently for each channel.

Capacity manipulations
Internal noise was implemented using Gaussian noise reg-
ularization from the tensorflow.keras module. Internal
noise was added to the output of the activation function of
every convolutional or fully-connected layer in each neural
network, except for the output layer. The standard deviation
of the noise was varied from 0 to 1.2, with an increment of
0.05 for networks using ReLU activation units, and between

1Please consult source for further details about the architectures
2TensorFlow 2.0 for Python 3.6
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0 and 0.2, incremented by 0.02 for sigmoid networks. The
lower values of noise for the sigmoid networks is due to the
upper bound of the range of the function being 1.

Following Lindsey et al. (2019), we incorporated an in-
formation bottleneck by reducing the number of convolu-
tional filters in the first convolutional layer of each network
(immediately following the input) as much as possible with-
out impairing performance on the CIFAR10 data set (96→ 2
for small-inception and 200→ 8 for small-alexnet).
While this manipulation reduces the total number of trainable
parameters only minimally, it has been demonstrated to quali-
tatively alter the types of filters learned in early convolutional
layers, resulting in the development of center-surround recep-
tive fields in layer 1 and a prevalence of Gabor-like filters in
subsequent layers. We hypothesize such changes would be
detrimental for unstructured data, which may require process-
ing more lower-level, idiosyncratic features, possibly on the
level of individual pixels.

Generalization tests
We applied several types of image distortion to either the
training or test set, derived from Geirhos et al. (2018)3.
Specifically, we focus on uniform noise and salt-and-pepper
noise. Although there are other available manipulations in
this problem set, we consider these two the most challenging
problems, as they are the ones for which the deep neural net-
works tested by Geirhos et al. (2018) exhibit the largest drop
in performance, and also those which diverge most from hu-
man results. The variance of the uniform noise and the prob-
ability value of the salt-and-pepper noise were varied system-
atically between 0 and 0.5, with an increment of 0.05.

Results
Experiment 1
In the first experiment, we trained each network using a bot-
tleneck, internal noise, or a combination of both, on either
CIFAR10 or the random-image data and assess their catego-
rization performance. Figure 2 summarizes the training accu-
racy for each model. Only data from the small-inception
models are displayed, as the results were comparable for
small-alexnet architectures. Test accuracy is also included
for the internal noise condition.

The bottleneck models do not show any diminished learn-
ing capacity for random data – they fit the random data with
perfect accuracy (see light versus dark bars in Figure 2 at
noise level 0.0). On the other hand, the noise manipulation
was effective. As we increased the variance of the inter-
nal noise, the training accuracy of the random image model
started decreasing, showing that the network failed to learn
unstructured data. Crucially, the performance for structured
(CIFAR10) data showed only a minor drop for values of in-
ternal noise which reduced learning on unstructured data to

3Code adapted from https://github.com/rgeirhos/generalisation-
humans-DNNs

chance levels (Figure 2 - Left). Finaly, changing the activa-
tion function of the networks to sigmoid does not appear, by
itself, to diminish the networks’ ability to learn random data
(Figure 2 - Bottom).

We also examined whether the network’s capacity for
learning unstructured information can be further limited by
combining a bottleneck with internal noise. In order to do
this, we considered a network with a bottleneck as well as a
‘moderate’ (σ = 0.2 for ReLU, σ = 0.04 for sigmoid) or a
‘high’ (σ = 0.4; σ = 0.1 ) level of internal noise. The results
are shown in the (light versus dark) bar plots on the right of
Figure 2. We observed that a combination of the two con-
straints is indeed more effective at diminishing random data
learning compared to the noise condition alone, especially at
a ‘moderate’ level of internal noise.

Experiment 2

One interpretation of the above findings is that, as intended,
injecting internal noise reduced the memory capacity of the
networks such that they were unable to learn the random im-
ages. Another possibility, however, is that the internal noise
selectively impairs the ability of the network to learn noise-
like patterns, and that the capacity of the networks for other
types of inputs, structured or not, remains unaffected.

Therefore, to investigate the effect of injecting internal
noise further, we trained multiple models with a large internal
noise (greater than the threshold value of 0.6, see Figure 2) to
categorize random images or CIFAR10 stimuli, while vary-
ing the number of total classes (from 10 to 2), as well as the
number of images seen in each class (from 1000 to 10). If
internal noise works by reducing the learning capacity rather
than impairing the learning of unstructured information, we
should observe improvement in training accuracy for both the
CIFAR10 and noise-like patterns when there are fewer cate-
gories and examples per category.

Figure 3 illustrates results for small-alexnet based mod-
els trained with a large internal noise. It can be seen from
this Figure that training accuracy improves from chance lev-
els when the network was trained on a dataset with 5000 ex-
amples/category and 10 categories (see Figure 2) to above
chance levels when the number of examples or categories de-
creases. Furthermore, decreasing the number of exemplars
or classes steadily improves performance. We also noted
that this also led to an improvement in performance for the
structured (CIFAR10) dataset, but there was less variability in
the model accuracy of CIFAR10-trained models, which per-
form very well throughout the conditions. Thus, these results
lend support to the hypothesis that injecting internal noise de-
creases the learning capacity of networks rather than prevent
them from learning unstructured information.

Experiment 3

Our results from Experiment 1 show that the internal noise
models do not affect natural and random images in the same
way. Further, Experiment 2 suggest that the manipulations
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Figure 2: Accuracy for small-inception models with biological constraints. Top: ReLU activation function. Bottom:
Sigmoid activation function. The x-axis represents the variance of internal Gaussian noise. The origin represents models
without internal noise. On the left, lines visualize the training (solid) and test (dashed) data accuracy of models with internal
noise on the CIFAR10 data set or a random image data set. On the right, bars show performance for models with (light bars) or
without (dark bars) a bottleneck for various values of internal noise.

decrease the networks’ capacity. The disproportionate im-
pact could be an indicator that, even though CIFAR10 cate-
gorization performance does not diminish, there are changes
to the internal representations the models are learning. We
hypothesize that the constrained capacity of the models could
be affecting what convolutional filters are learned, possibly
by focusing on more robust, invariant features. To investi-
gate, we test the generalization performance of the networks
trained with internal noise, with and without a bottleneck, on
images from the test set modified by out-of-domain manipu-
lations (examples in Figure 1).

It can be argued that a more direct way of investigating
changes to the models’ internal representations would be to
visualize the features learned by neurons in each channel
of the convolutional layers by various techniques (Yosinski,
Clune, Nguyen, Fuchs, & Lipson, 2015). We acknowledge
that such methods can be very useful for understanding neu-
ral networks. However, they are not suited to answering
questions about the qualitative differences between represen-
tations. Knowing the details of differences in two models’
learned representations does not necessarily tell us which
model, if any, would exhibit better generalization. Our im-

plicit measure of robustness is better equipped to answer such
questions.

All models in this experiment were trained on the CI-
FAR10 data set. The networks with ReLU activation do not
appear to benefit from the noise training in terms of their gen-
eralization performance (Figure 4 - Top). Overall accuracy is
similar across all tested ReLU models, but the baseline net-
work, trained without any internal noise, performs the best.
The sigmoid networks, on the other hand, show a slight im-
provement in accuracy on the modified test images in the salt-
and-pepper noise condition (Figure 4 - Bottom). The models
with a moderate amount of internal noise are better at classi-
fying the degraded images at low levels of input noise. How-
ever, the effect is not maintained for higher amounts of in-
put noise. This advantage is furthered in the internal noise
and bottleneck condition (Figure 4 b) - Bottom), with inter-
nal noise models performing better than baseline, for both
uniform and salt-and-pepper.

Discussion
The proposed capacity constraints produced results with
mixed efficacy with respect to the goal of the project. Adding
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Figure 3: Training accuracy of models using different numbers of classes and examples per class, using internal noise of σ= 0.8
(higher than threshold from Experiment 1). Darker bars represent a greater number of classes. Left: CIFAR10 accuracy. Right:
Random image accuracy.

internal noise to hidden layer activation values achieved the
desired effect of reducing the ability of the models to learn
random images, while retaining a nearly unchanged training
and generalization performance on natural images. On the
other hand, the bottleneck intervention turned out to not be
effective as a way of constraining the neural networks’ learn-
ing capacity by itself, in any of the conditions. Neverthe-
less, the combined constraints condition showed that it did
have a net effect on learning capacity. One explanation could
be that the implementation of the information bottleneck was
not adequate for the task. It is difficult to compute just how
severe the constraint is as the unit activations are not only un-
bounded in the case of ReLU networks, but also have a large
precision, since they are represented as 32-bit floating point
numbers. This makes estimating the channel capacity of the
bottleneck in bits difficult, since it is uncertain what level of
detail the models require for discrimination (does a difference
of 10−5 matter for classification?) Future work could narrow
down the possible values by introducing precision-limiting
measures such as rounding the activation values or using a
binary activation function.

Arplt et al. (2017) have conducted a similar experiment,
using several kinds of model regularization – techniques that
reduced overfitting a model to the training data – in order to
reduce ’memorization’ of random stimuli without impacting
test performance on a natural image data set. Interestingly,
our results from Experiment 1 are at odds some of the data
reported in that study. Specifically, Arplt et al. (2017) also
use internal Gaussian noise regularization, but conclude it is
not effective in decreasing memorization. There are some im-
portant differences between the two studies. First, while we
focus on the random images task from Zhang et al. (2017),
Arplt et al. (2017) chose to work with the random label con-

dition instead. Secondly – and critically – the values for the
variance of the Gaussian noise they explore are too low to
noticably decrease memorization capacity. That behavior be-
comes most prominent at values around twice the maximum
range considered by Arplt et al. (2017). Finally, they report
a reduction in test data accuracy on the CIFAR10 dataset,
which we do not observe in our experiments. Further efforts
will be needed to establish why the results of the two studies
diverge and whether they would hold in the context of a di-
rect replication. Preliminary findings support the robustness
of the data.

Further work will be required to explain how and why the
sigmoid models show some improvement to out-of-domain
generalization to manipulated images, albeit modest, while
networks with ReLU activations do not. The internal repre-
sentations of both models could be analyzed and compared in
other ways, for instance by visualizing the receptive fields of
hidden units in different layers and inspecting the differences
in the patterns the units have specialized to detect.

Our results establish that, at least in the context of the ar-
chitectures and data sets studied, DNNs can endure signifi-
cant constraints while maintaining their testing performance
on natural images – highlighting that they otherwise operate
well over the required capacity. In this context, it is inter-
esting to consider examples of deep learning models which
manage to match or surpass human performance (He et al.,
2015; Schroff et al., 2015). Would these models be able to
perform at the same human-like levels if their learning capac-
ity is controlled to match other human constraints?

While in Experiment 3 we focused only on two forms of
image manipulations to study the generalization behavior of
constrained models, other focused manipulations could also
offer insights into the kinds of features models are sensi-
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(a) Without bottleneck (b) With bottleneck

Figure 4: Generalization performance on out-of-domain image manipulations for combinations of constraints. Left: Uniform
image noise. Right: Salt-and-pepper noise.

tive to. For example, it has been proposed that convolu-
tional neural networks already focus too much on spatially
high-frequency information such as texture (Geirhos et al.,
2019). Using manipulations such as a low-pass filter could
uncover whether models with capacity constraints are more
prone to attune to spatially low-frequency information than
unconstrained models.

Conclusion
We demonstrate that biologically inspired mechanisms can be
effective at reducing the capacity of deep neural networks.
The resulting models are more consistent with human be-
haviour, as they are less capable of learning arbitrary in-
puts such as random noise images. Further work is neces-
sary to determine how a reduced capacity influences inter-
nal representations. Results from Experiment 3 suggest that
more severe constraints, such as combining internal noise,
sigmoid activations and a bottleneck, show modest improve-
ments in generalization to unobserved image manipulations.
The mechanisms of this behaviour are yet to be elucidated.
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