Accurate representation for spatial cognition using grid cells

Nicole Sandra-Yaffa Dumont (ns2dumont@uwaterloo.ca) & Chris Eliasmith (celiasmith@uwaterloo.ca)
Computational Neuroscience Research Group, University of Waterloo
200 University Ave W, Waterloo, ON N2L.3G1, Canada

Abstract

Spatial cognition relies on an internal map-like representation
of space provided by hippocampal place cells, which in turn
are thought to rely on grid cells as a basis. Spatial Seman-
tic Pointers (SSP) have been introduced as a way to represent
continuous spaces and positions via the activity of a spiking
neural network. In this work, we further develop SSP rep-
resentation to replicate the firing patterns of grid cells. This
adds biological realism to the SSP representation and links bi-
ological findings with a larger theoretical framework for rep-
resenting concepts. Furthermore, replicating grid cell activity
with SSPs results in greater accuracy when constructing place
cells.Improved accuracy is a result of grid cells forming the op-
timal basis for decoding positions and place cell output. Our
results have implications for modelling spatial cognition and
more general cognitive representations over continuous vari-
ables.
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Introduction

In the 1940’s, Tolmann observed that rats learning maze lay-
outs discovered shortcuts, and proposed that they navigate
using a “cognitive map” (Tolman, 1948). Evidence for the
idea that animals have an internal allocentric representation
of space has accumulated, specifically from electrophysio-
logical recordings in the hippocampal-entorhinal circuit. Two
main types of spatially responsive cells have been observed.
Place cells that become active at specific regions in an en-
vironment were discovered in the hippocampus (O’Keefe &
Nadel, 1978). Grid cells in the medial entorhinal cortex
(MEC) activate at hexagonally tiled points in an environment
(Hafting, Fyhn, Molden, Moser, & Moser, 2005). The reso-
lution and orientation of the pattern varies among grid cells.
These cells are believed to provide a basis for hippocampal
cognitive maps.

Recent experiments have indicated that the neural mech-
anisms behind spatial navigation may be a general mech-
anism for encoding continuous variables (Aronov, Nevers,
& Tank, 2017; Constantinescu, O’Reilly, & Behrens, 2016).
This evidence has been used to support the idea of cognitive
spaces — a generalization of cognitive maps applied to con-
cepts (Bellmund, Gérdenfors, Moser, & Doeller, 2018). Cog-
nitive representation in a geometric fashion is central to the
Semantic Pointer Architecture (SPA); (Eliasmith, 2013). In
this framework, compressed vectors — termed semantic point-

Figure 1: Similarity plots of SSPs decoded from a 361 di-
mensional memory vector storing 4 different spatially-bound
objects. The ground truth locations of the items are marked
by symbols.

ers — are used to represent anything from low level visual fea-
tures to high level concepts. Cognitive semantic pointers can
be bound together to build syntactic structures which live in
a continuous vector space where distance represents concept
similarity. These vectors can be encoded, decoded, and com-
puted with the collective activity of spiking neurons using the
Neural Engineering Framework (NEF); (Eliasmith & Ander-
son, 2003).

A core feature of semantic pointers is their ability to be
composed in hierarchies using binding and bundling opera-
tions. Until recently, cognitive semantic pointers, like most
vector symbolic architectures (VSAs), have been restricted to
representing discrete structures (e.g., trees, graphs, lists, etc.).
However, continuous structures are needed for spatial repre-
sentation, and many other tasks. The hippocampus plays a
key role in spatila representation. As a result, representing
continuous spatial structures with SPA in a manner consistent
with hippocampal data may improve our understanding of the
mechanisms underlying spatial cognition.

Background
Spatial Semantic Pointers

In Komer, Stewart, Voelker, and Eliasmith (2019), Spatial Se-
mantic Pointers (SSPs) were introduced as a way of encoding
spatial coordinates, or, more generally, representing any con-
tinuous variables within the SPA framework. Let us begin by
considering discrete VSA representations using circular con-
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volution (Plate, 1994). In this case, an integer index, n € N,
of a structure (e.g., this could be the ordered position in a
list) can be encoded by binding a semantic pointer to itself n
times.
B'"=B®B®---®B (D)
n times

To ensure that the magnitude of the pointer does not change
with repeated binding, a unitary B vector is used. A unitary
vector is defined to be a vector whose discrete Fourier trans-
form has entries with an absolute value of one. With such a
representation in hand, we could bind objects in an ordered
list to these index vectors, and sum across them to generate a
distributed representation of the full list (Choo & Eliasmith,
2010). Notably, any such structure has discrete ‘slots’.
Interestingly, this repeated self-binding can be generalized
to encode a continuous variable k € R. In particular, we can
define “fractional binding” by recalling the relationship be-
tween circular convolution and the discrete Fourier transform.

B =FYF{B}, keR )

where the exponentiation of F {B}* is element-wise. We now
have a means of generating continuous ‘slots’ in our represen-
tation, where the distance between such slots is determined by
the difference between k. To represent multiple continuous
variables, such as an x,y coordinate in 2-dimensional space,
we can bind the continuous representation of each dimension
together,

Sy)=X"@y =F HF{XYoF{ry}, 0

where © is the Hadamard (element-wise) product and X, Y €
R¢ are randomly chosen unitary vectors. This vector S(x,y) is
a Spatial Semantic Pointer (SSP). The vectors X, Y are called
the bases vectors of the representation. The vector space in
which a SSP lives can be thought of as a cognitive map.

This spatial representation has several useful properties.
Binding can be used to shift the SSP,

S(x1,y1) ®S(x2,y2) = S(x1 +x2,y1 +y2) )

Spatial representations can be attached to other semantic
pointers (e.g., vector representations of objects, landmarks,
shapes, colours, etc.). For example, a semantic pointer repre-
senting an object can be bound with the SSP that represents
its location, OBJ ® S(x,y). A set of such location-tagged ob-
ject representations can be stored in a memory vector.

M= ZOBJ,'@S(X,’,)),') 5

To obtain the location of an object, the semantic pointer of
the object can be unbound from the memory vector.

M® (OBJ;)" ~ S(xi,yi) ©)

The high-dimensional memory vector M can be visually
represented by computing the dot product similarity of it with
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Figure 2: Example wave vectors (top) and the resulting inter-
ference patterns (bottom). Combining multiple sets of such
wave vectors at different orientations produces a bump with
surrounding rings (center). Adding more rotations and wave
vectors of different magnitudes reduces the magnitude of the
surrounding rings and localizes the representation (right).

SSPs representing evenly tiled points in x,y space. The sim-
ilarity can be plotted as a heat map over that space. Fig. 1
provides an example of this visualization. It shows the sim-
ilarity plot of M ® (OBJ;)~! for four different objects stored
in the same 361 dimensional memory vector. Several exam-
ples of encoding, decoding, and manipulating such vectors in
a spiking neural network can be found in Komer et al. (2019).

In this paper, we extend the earlier results of Komer et al.
(2019) to show that SSPs can be modified to naturally gen-
erate representations at the neuron level that resemble those
found in the brain (both grid cells and place cells). Further-
more, we show that these brain-like SSPs are significantly
more accurate for encoding cognitive maps than the randomly
generated SSPs used in that previous work.

Grid cells

Sorscher, Mel, Ganguli, and Ocko (2019) examined several
different neural network architectures trained on path inte-
gration tasks. Interestingly, hidden layers with grid cell-like
activity arose. The optimization problem common to all of
the models was reconstructing a matrix of place cell output
using a lower dimensional matrix of output from a hidden
layer.

Let P € R™*" (where n, is the number of place cells and
n, is the number of training points in space) be a given matrix
of place cell responses sampled across space. We will use
Gaussian bumps as the ideal place cell responses.

1 e_z(%z(xi—.un)T(Xi_lJn) (7)

Pi.,n = Pn(xi) =
cV2m

The task is to find the hidden layer activations G € R"*"s
(where ng is the number of hidden neurons and n, < n,) and
the matrix of read-out weights W € R"¢*"» that minimize the



reconstruction error of the place cell responses.
in||P—P||? 8
min 1 |7, ®)
P=Gw ©)
The optimal W for a fixed G is given by
w*=(G"G)'G"P. (10)

This W should be thought of as the connection weights be-
tween the final two layers of some deep neural network. The
input to the full network would be low level sensory informa-
tion and the output would be the place cell activity, P. The
hidden layer with activations G is the last layer before the
place cells, and, since ny < np, it creates an information bot-
tleneck. We are interested in finding the optimal G - a com-
pressed representation of spatial position that is optimal for
reconstructing P in a single layer.

This is a low-rank approximation problem, i.e., the prob-
lem of fitting a data matrix using an approximating matrix
that has a reduced rank. By the matrix approximation lemma,
the columns of the optimal G will span the top n, eigenvec-
tors of PPT — the correlation matrix of place cell responses.
As stated in Sorscher et al. (2019), if the number of place
cells is large and their receptive fields uniformly cover space
(and space has periodic boundary conditions) then PP will
approximately be a circulant matrix and its eigenvectors will
be Fourier modes.

Thus, the optimal responses of hidden neurons will be lin-
ear combinations of plane waves. This will produce hid-
den neurons with grid-like spatial responses. Adding a non-
negativity constraint to this optimization problem will result
in the activity of an individual hidden neuron being propor-
tional to a sum of three plane waves whose wave vectors are
120° degrees apart. Specifically, a column of G will have en-
tries,

3
Zeik]‘~xn +e—ikj'x,1 (11)
j=1
where ‘k]| = |kl‘ Vl,] (12)
3
Y k=0 (13)
j=1

The interference pattern of these waves will have a hexago-
nal grid pattern, like grid cells. The magnitude of the wave
vectors, |k, will determine the resolution of the grid: the dis-
tance between nearest peaks in the grid pattern will be \/ngl[(jl .
Fig. 2 shows this interference pattern, along with the patterns
resulting from adding multiple sets of such plane waves to-
gether.! A linear combination of many sets of these waves
with correct weighting provides a finite approximation to a

'While the bump in Fig. 2 appears isolated, it will repeat over
a large enough scale. The size of space we want to represent place
cells over and the width of their place fields will determine the opti-
mal resolution scales of the grid cells (i.e., |k;|).
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Gaussian bump in a plane wave basis. This is how P is recon-
structed. In short, this provides a reason to think that hexago-
nal grid cells are optimal for representing place cells.

Methods
Forming grid cells with SSPs

The Neural Engineering Framework (NEF) provides a set of
principles for performing computations with spiking neural
networks. The first principle of the NEF is representation.
The time varying SSP representing a point travelling through
space, S(x(¢),y(t)) € RY, can be represented by a population
of ng neurons. Each neuron encodes the SSP via the formula,

ai(r) = Gilouei - S(x(1),(1)) + Bil, (14)

where a;(t) is the activity of neuron i, e; € R is the en-
coder of the neuron, a; > 0 is its gain, J; is its bias, and G;
is a nonlinear, non-negative activation function. Depending
on the activation function used, a;(¢) will either be a spike
train or firing rate. For simplicity, a rate approximation of the
leaky integrate-and-fire model will be used here unless stated
otherwise. This is given by

1 : thres
J[hrex 9 lf J > J[

trr—sretn(1- 27 ) (15)

0, else

GilJl =

Neuron model parameters are chosen so that the maximum
firing rate of the neurons is uniformly distributed from 20Hz
to 40Hz.

The signal S(x(¢),y(¢)) can be decoded from the neural ac-
tivity by

g
S(x(1),y(1) = Y ai(t)d, (16)
i=1
where d; € R? are the decoders of the population. The op-
timal set of decoders — i.e., the set that minimizes the error
between the true signal and the signal reconstructed from neu-
ral activity — can be found exactly. Additionally, optimal de-
coders for computing some function of the input signal from
the activity can also be computed. The optimal decoders for
computing f(S(x(z),y(r)) € R" are

D=(G"G)"'G" f(5(x,y)), (17)

here x,y are n, dimensional vectors of points sampled in
space, G € R™*"s is the matrix of activities of the n, neurons
given input S(x,y) at the sample points, D € R"*" is the
matrix of decoders, and f(S(x,y)) € R™*"» contains samples
of the function we wish to compute. This is the same as Eq.
10 for computing W* with D = W and f(S(x,y)) = P. These
decoders can be used to compute the weights connecting the
population of n, neurons to a population of n, neurons so that
they have the desired place cell activity.

To optimally produce the place cell responses, the activity
matrix G must have columns proportional to linear combina-
tions of plane waves as in Eq. 11. Consider the activation of



Figure 3: Example firing rates of neurons used to represent a
361 dimensional SSP with random unitary bases vectors.
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Figure 5: Examples of the spiking activity of neurons from a
grid cell population. The line in grey is the trajectory of points
that the neuron population represents as a SSP over time. Each
circle shows an example neuron from the population. The dots
show where on the trajectory the neuron fired.

a single neuron with a SSP of a fixed location (a preferred fir-

ing location of the neuron) as its encoder. The e, - S(x(z),y())

part of the activity of neuron n will be

e, S(x(1),y(t)) = X ®Y’) - (X" @Y™) (18)
< (FAXYOF{YY) - (F{XFroF{r")

19)

E Z F { X}x+xn F {Y}Y+yn (20)
j=0
1 d*]

_ E I’; Oy,j x+x,,)+9) j(Y+yn)) (21)
Jj=0

where F{X}; = ry e and F{Y}; = ry je"®i. We want
to set these ry ;,0y j, 7y, j, 0y j parameters so that this equation
is equal to Eq. 11 so let
ei,  for j=0,1,2

Xj={ e™M-i forj=d—-2,d—1,d (22)
1, else
evi, for j=0,1,2

Y; =S e i, forj=d-2,d—1,d (23)
1, else

Figure 4: Example firing rates of neurons from a population of
grid cells used to represent the SSP with bases vectors X4
and Yiorar-

Figure 6: Examples of the spiking activity of neurons from a
place cell population whose input is comes from a grid cell
population. The line in grey is the trajectory of points that the
grid cell population represents as a SSP over time. Each circle
shows an example neuron from the population. The dots show
where on the trajectory the neuron fired.

where Zu] ZV]—O 24)
Jj=0
\/u§+v§=\/u,2+vi2, ije{0,1,2) (@25

and take X = 7 !(X) and Y = F~!(¥). This gives the de-
sired bases vectors. The choice of (u;,v;) for j € {0,1,2} that
satisfy the above equations will determine the orientation and
resolution of the hexagonal grid activity patterns exhibited
by the neurons representing S(x(¢),y(t)).> The dimension of
these bases vectors must be d > 7 to capture the 3 plane waves
and a zero-frequency term. Since ry; = ry ; = 1, the vectors
X and Y will be unitary and, thus, binding will not affect the
magnitude of the SSP. The placement of the complex conju-
gate pairs will ensure that X and Y are real.

Multi-scale grid cells
While Eqgs. 22 and 23 show how to obtain bases vectors that

will produce hexagonally gridded neural activity, we need

ZWith these bases vectors, even using random encoders will pro-
duce neurons with grid cell-like activity patterns but with added dis-
tortion.
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Figure 7: The grid cell population representing S(x,y) =
X ® Ytyoml consists of N groups of neurons. Here two neu-
rons from three of such groups are shown as rows in box la-
belled grid cells. The grids vary in scale, much like in the
MEC where grid scales increase along dorsal to ventral axis
(Brun et al., 2008). This population is connected to a place
cell population using connection weights given in 10.

grids of different orientations and resolutions to accurately
compute place cell responses. This can be done by using
higher dimensional bases vectors that contain the vectors of
Eqgs. 22 and 23 as sub-vectors in the Fourier domain.
Consider the following basis vector in the Fourier domain

- ) W) )
Xiotal = | ™o e 1 e M e

........

T
. (0
~ul0]" ¢ ooVt

(26)
This vector contains N sets of the 6 Fourier modes that give
rise to hexagonal grid patterns. Each of the N sets will have
wave vectors that lie on an equilateral triangle. The difference
between the sets will be the orientation of the wave vectors
and their magnitude.
We will define the n'* sub-vector as sub-vector

_ . . \n . \n . (n . \n . \n T
Xy = e”‘(()n),e’”(l ),e’“g : , l,e_’“; ),e_’“(l ),ef”‘(()’)} - @n

We can construct a matrix B,, that will take the n”* sub vec-
tor X, € C7 and project it to a 6N + 1 vector that contains
the sub-vector in the same position as in X;,;,; and zeros else-
where.The sum of all such projections will produce the com-
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plete vector.
—_ Nf] —_ —_
Xiotar = Y, BuXy (28)
n=0
Converting to the time domain,

N—1
Xiotat = Y, Wens1 BaWr X (29)

n=0

where W7 is the 7 x 7 DFT matrix and W67v1+1 is the 6N + 1 x
6N + 1 IDFT matrix.

Thus, a population of n, neurons that encodes a SSP con-
structed with such bases vectors will has hexagonal grid ac-
tivity patterns of different orientations and resolutions. The
total population will represent the 6N + 1 dimensional SSP,
S(x,y) =X}, ®Y. . Neurons can be sorted into N groups
with different orientations and resolutions. Neuron i from

group n will have an encoder given by
e = NWey',  BaW7 (XJi @ Y71). (30)

Neurons within a group will have hexagonal activity pat-
terns of the same orientation and resolution but with different
shifts and receptive field widths (from variations in threshold
current and bias parameters). Populations of neurons con-
structed in this way will be referred to as grid cell popu-
lations. Examples of the activity patterns of select neurons
within a grid cell population are shown in Fig 4. In contrast,
Fig. 3 shows the activity patterns of neurons from a popula-
tion that represents a SSP constructed using random unitary
bases vectors of dimension 6N + 1. In the random SSP pop-
ulation, d-dimensional SSPs representing uniform locations
over space are used as encoders. As can be seen, the random
SSPs do not replicate a hexagonal grid structure.

To increase biological realism, populations can be simu-
lated using the spiking version of the leaky-integrate-and-fire
model. Examples of the hexagonal firing patterns of neurons
in a grid cell population are given in Fig. 5.

Neurons with place cell-like firing patterns can be simu-
lated by connecting this population of spiking grid cells to
population of 7, neurons using connection weights:

OJij:(XjILj'di (31)

where ®;; is the connection weight from grid cell i to place
cell j, d; are the decoders of the grid cell population given
in Eq. 17, a; is the gain of place cell j, and 1; is a one-hot
vector with a one in the j”* position — this is the encoder of
the place cell. Example firing patterns of neurons in such a
place cell population are given in Fig. 6.

Accurate place cell representation

Replicating grid cell patterns is useful for biological fidelity,
but does not address the question of why such patterns arise
in the first place. As mentioned, Sorscher et al. (2019), sug-
gested that such patterns should be optimal under weak as-
sumptions. Here we test that hypothesis using SSP-based rep-
resentations.
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Figure 8: The squared Frobenius norm between the ideal place
cell output and the model place cell output versus the dimen-
sion of the SSP used in computing the approximation. The
dashed line shows the mean values obtained over 10 trials us-
ing random bases vectors. The error bands around this line are
the min and max values.

Using the decoders of Eq. 10, place cell output was recon-
structed using the activity of a population of grid cells and,
for comparison, a population of neurons representing SSPs
with random unitary bases vectors of dimension d. The di-
mensions of the SSPs and the population used were N = 60
(from using 5 different sets of grid orientations and 12 sets
of different resolutions), d = 6N + 1 = 361, n, = 600, and
n, = 3000. The activity was recorded over x,y € [—10, 10]
with n, = 10000. The grid spacing varied from 9 to 3.6 across
the neurons. The error in the reconstruction of place cell out-
put was computed with the squared Frobenius norm.

1P~ GW*[[7 (32)
where the ground truth P matrix of place cell firing rates is
as given in Eq. 7 with field centers randomly distributed over
the space.

In addition, the average distance from the true center of the
place cells fields (u, from Eq. 7) and the center of the recon-
structed place cells was computed. The results are given in
Table 1. In both measures, the grid cell population outper-
formed the random SSP population.

We also investigated the effects of using higher dimen-
sional SSPs. Figs 8 and 9 show the matrix norm and cen-
ter distance error measures plotted versus the SSP dimension
d. The grid cell population consistently performed better on
both measures for all values of d greater than 37. Increasing d
beyond 400 did not improve the performance with grid cells.
As low a value of d = 169 can be used with grid cells while
maintaining accurate place cell output.

Lastly, the effect of the number of place cells, 7, on the re-
construction accuracy was explored. As the number of place
cells increases, the ratio of hidden layer neurons to place cells
decreases. The hidden layer becomes a greater information
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Figure 9: The average distance between the ideal place cell
centers and the centers of the model place cell output versus
the dimension of the SSP used in computing the approxima-
tion. The dashed line shows the mean values obtained over 10
trials using random bases vectors. The error bands around this
line are the min and max values.

bottleneck. Fig. 10 shows the matrix norm error measure
plotted versus n,. The error increases with n), faster in the
random SSP population than in the grid cell population. The
grid cell population scales better as it provides a better basis
for decoding place fields.

From these results, we now have evidence that the SSP
characterization of spatial representation, which supports the
representation of objects over continuous slots with fractional
binding, can be implemented using bases vectors that are ef-
ficient for generating place cell activity. This suggests that
SSPs can act as a unifying representation from low-level grid
cell activity to cognitive representations of objects (with hun-
dreds of features) at continuous spatial locations.

Conclusion

In summary, Spatial Semantic Pointers can be represented by
the activity of a population of grid cells organized into mod-
ules of different orientation and spatial resolutions — much
like the real modular organization of grid cells in the entorhi-
nal cortex (Fig. 7). This method of representing space can
be modelled by spiking neural networks and reproduces the
neural activity patterns seen in the brain.

The method presented for constructing SSPs produces a
basis for accurately decoding place cell output. It outper-
forms SSPs constructed from random unitary bases vectors at
both decoding place cell responses across space and match-
ing the correct place field centers. This methodology could be
extended as a general way to accurately represent continuous
variables. Recent experiments have found that grid cell-like
activity occurs during tasks involving navigation over contin-
uous non-spatial dimensions such as sound and visual fea-
tures. Additionallt, some hippocampal cells have been found
to be preferentially receptive to particular concepts, just as
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Table 1: The results of the place cell output reconstruction using the activity of neuron population of grid cells and populations
representing random SSPs with d = 361. The results using random SSPs were averaged over 10 trials. The squared Frobenius
norm is a measure of the matrix reconstruction error (see Eq. 32). The center distance is the average distance from the true
place field centers and the centers of the reconstructions. The numbers in brackets are the 95% confidence intervals for the 10

random trials.
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Center Distance
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number of place cells being approximated. The dashed line
shows the mean values obtained over 10 trials using random
bases vectors. The error bands around this line are the min
and max values.

place cells are to specific regions in space.

Since grid cells are an optimal basis for representing places
then they may also be an optimal basis for representing con-
cepts that reside in continuous feature spaces. SSPs are well
suited for such representations - they can used to represent
any continuous variable and can be bound together with se-
mantic pointers representing discrete variables/concepts as
well. Semantic pointers that reside in different cognitive
spaces can be bound together in hierarchical structures, al-
lowing for rich and complex representations all modelled in
spiking neural networks.

Future work will include exploring the generalization of
SSPs to concept representation and advancing the realism of
spatial cognition by including path integration — integrating
over velocity input to update the SSP over time and using
visual feedback for correction.
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