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Abstract

Recent models of language have eliminated syntactic-semantic
dividing lines. We explore the psycholinguistic implications
of this development by comparing different types of sentence
embeddings in their ability to encode syntactic constructions.
Our study uses contrasting sentence structures known to cause
syntactic priming effects, that is, the tendency in humans to re-
peat sentence structures after recent exposure. We compare
how syntactic alternatives are captured by sentence embed-
dings produced by a neural language model (BERT) or by the
composition of word embeddings (BEAGLE, HHM, GloVe).
Dative double object vs. prepositional object and active vs.
passive sentences are separable in the high-dimensional space
of the sentence embeddings and can be classified with a high
degree of accuracy. The results lend empirical support to the
modern, computational, integrated accounts of semantics and
syntax, and they shed light on the information stored at differ-
ent layers in deep language models such as BERT.

Keywords: syntactic priming; language models; neural net-
works; word embeddings; sentence embeddings

Introduction
For many natural language processing applications, there is
limited data available to train the model on the specific task,
often due to the high cost of annotating data. Pre-trained word
embeddings are often used to address the problem of limited
data. More recent efforts have focused on developing pre-
trained sentence embeddings that work well on a broad range
of natural language tasks (Cer et al., 2018; Conneau, Kiela,
Schwenk, Barrault, & Bordes, 2017).

Understanding how the human mind represents sentences
can inform the development of sentence embeddings in natu-
ral language processing models. How, exactly, the mind rep-
resents language remains an open question. However, syn-
tactic priming (Bock, 1986) provides a window into the mind
and a useful tool for validating computational representations.
In turn, the ability of computational representations to ac-
count for human behaviour informs our understanding of the
possible algorithms implemented by the mind.

Syntactic priming occurs when people are more likely to
produce a sentence with a given structure after they have pro-
cessed one with the same structure (Bock, 1986). Syntac-
tic priming is interpreted as evidence that “some syntactic
processes are organized into a functionally independent sub-
system” (Bock, 1986) isolated from semantics. Conversely,
we present evidence that integrated natural language process-
ing models are compatible with syntactic priming effects.

Priming is evident not just in syntax, but also in semantics.
Semantic priming is the finding that a word becomes more
available in memory if preceded by a word with a similar
meaning. The amount of semantic priming can be predicted
using the distance between word embeddings generated by
distributional semantic models (Günther, Dudschig, & Kaup,
2016; Jones, Kintsch, & Mewhort, 2006).

We show that distinctions evidenced for by syntactic prim-
ing can be accounted for using sentence embeddings. We
build sentence embeddings by averaging the hidden state of
a language model or by composing word embeddings. The
language model we use is the Bidirectional Encoder Repre-
sentations from Transformers (BERT; Devlin, Chang, Lee,
& Toutanova, 2019). For word embeddings we use Global
Vectors (GloVe; Pennington, Socher, & Manning, 2014), the
Bound Encoding of the Aggregate Language Environment
(BEAGLE; Jones & Mewhort, 2007), and the Hierarchical
Holographic Model (HHM; Kelly, Reitter, & West, 2017).

We compare four techniques for combining word embed-
dings into a sentence embedding. Summing word embed-
dings is the most common, but does not preserve word order.
We also investigate two order-preserving techniques based on
permutation and one based on convolution.

In what follows, we demonstrate that different kinds of sen-
tence structures, namely, dative double object sentences ver-
sus dative prepositional object sentences and passive versus
active voice, are separable in the high-dimensional space of
the sentence embeddings and can be classified with a high
degree of accuracy. Our results illustrate that syntactic prim-
ing is compatible with modern, computational, integrated ac-
counts of semantics and syntax.

Data Collection
Bock (1986) first demonstrated syntactic priming on dative
double object (DO) versus dative prepositional object sen-
tences (PO) and active versus passive voice. Accordingly,
we use two data sets: (1) sentences from a syntactic prim-
ing experiment on PO versus DO priming and (2) a corpus
annotated for passive versus active voice.

In a DO sentence, the indirect object comes before the di-
rect object. For example, “The sailor mailed his sweetheart
a letter”. In a PO sentence, the direct object comes first and
the indirect object follows after a preposition. For example,
“The sailor mailed a letter to his sweetheart”.
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Our data is collected using the research design from
Branigan, Pickering, Liversedge, Stewart, and Urbach (1995)
for written-language priming. Participants are given a partial
sentence as a prompt and are asked to generate a complete
sentence. At the priming stage, the sentence prompt biases
participants towards producing either a PO or DO sentence.
For example, “The young mother gave the car...” biases
participants towards a PO completion such as “The young
mother gave the car to her daughter”. The DO completion
“The young mother gave the car her daughter” is grammati-
cal but nonsensical and thus unlikely to be produced.

At the target stage, participants are given an unbiased
prompt (e.g., “The researcher sent...”) which can elicit either
a DO or PO completion (e.g., “The researcher sent his work
to a colleague for review” or “The researcher sent a colleague
his work for review”). When participants produce a PO prime
they are more likely to produce a PO target, or, likewise, a DO
target if they produced a DO prime.

Syntactic priming is indicative that in some important
sense the brain’s representations for PO sentences are sim-
ilar to other PO sentences, and the representations for DO
sentences are similar to other DO sentences (e.g., Kaschak,
Kutta, & Jones, 2011; Reitter, Keller, & Moore, 2011). Thus,
for our purposes, demonstrating that embeddings are able to
discriminate PO and DO is sufficient to demonstrate that the
models are capable of accounting for syntactic priming.

To assess the models, we use the completed sentences from
the data collection experiment. Note that despite the ex-
perimental setup eliciting syntactic priming data, we do not
model the priming effect, but rather the encoding of PO, DO,
active, and passive sentences. What the experiment design
allows us to do is to (1) collect DO and PO sentences that
would be more onerous to extract from a corpus, and (2) use
materials generated by speakers that reflect actual sensitivity
to the priming of the PO and DO syntactic structures.

We recruited 298 participants on Amazon Mechanical Turk
(AMT) and paid for participation. While we used only 68
unique sentence prompts, a total of 11 520 unique, com-
pleted sentences were produced by participants. After re-
moving sentences with words outside of GloVe or HHM’s
vocabularies, we are left with 2441 PO sentences, 2607 DO
sentences, and 1816 sentences that are neither (e.g., “The in-
ventor showed me how it works”). Words outside BERT’s
vocabulary are replaced with an out-of-vocabulary token.

We sample data contrasting active and passive voice
from the European Parliamentary corpus (Europarl; Koehn,
20051). We select sentences with only one verb (though the
verb may be compound, e.g., was opened) and contain only
words in the vocabulary of both BEAGLE and GloVe, which
gives us 1303 passive voice sentences and 20 124 active voice
sentences. The Europarl sentences are difficult, as they tend
to be long (up to 83 tokens) with many low frequency words.

1Europarl corpus: https://www.idiap.ch/dataset/tense
-annotation/

Models
We use two distinct approaches to creating sentence embed-
dings. Our first approach is to take word embeddings gener-
ated by a distributional semantics model and combine. Our
second approach is to take the hidden states of a neural lan-
guage model and average over the length of the sentence.

Random
We randomly generate a unique 1024 dimensional embedding
for each word by sampling from a zero-mean Gaussian distri-
bution. The random word embeddings serve as a performance
baseline, as sentence embeddings built from them are sensi-
tive to word overlap (i.e., when sentences have words in com-
mon) but not semantics or part-of-speech. Random vectors
are orthogonal in expectation, such that the representation of
each unique word is highly distinctive. As such, random em-
beddings are more sensitive to the presence or absence of a
specific word than vectors sensitive to semantics or part-of-
speech, which may be advantageous for some language tasks.

BEAGLE and HHM
We use the the BEAGLE model (Jones & Mewhort, 2007)
and the Hierarchical Holographic Model (HHM; Kelly et al.,
2017) to generate 1024 dimensional word embeddings. HHM
is an extension of BEAGLE that produces a second level
of more abstract word embeddings, correlated with part-of-
speech and syntactic relationships (Kelly et al., 2017). We
train BEAGLE and HHM on a corpus of novels from Johns,
Jones, and Mewhort (2016), with 10 238 600 sentences,
145 393 172 words and 39 076 unique words.

GloVe
We compare BEAGLE and HHM to the widely-used Global
Vectors for Word Representation (GloVe; Pennington et al.,
2014). GloVe embeddings are constructed by dimensional
reduction on a word x word co-occurrence matrix. We use a
set of 300 dimensional GloVe embeddings pre-trained on En-
glish Wikipedia and the Gigaword corpus, which combined
have a total of six billion words2. A confound in comparing
GloVe and HHM’s performance is that GloVe is trained on
a dataset that is 40x larger, which should give GloVe a con-
siderable advantage. However, GloVe word embeddings are
constructed by treating each sentence as an unordered bag of
words. GloVe’s insensitivity to word order may detrimentally
affect GloVe’s ability to represent syntactic structure.

How to Combine Word Embeddings
We test four techniques for combining embeddings: sum, per-
mutation by absolute or relative position, and convolution.

Sum: The most common technique for combining word
embeddings to create sentence embeddings is to sum or aver-
age the embeddings of the words that are in the sentence. For
example, in “Dog bites man”, the sentence embedding s is a
sum of the word embeddings wword :

2Pre-trained GloVe: https://nlp.stanford.edu/projects/
glove/
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s = wbites +wdog +wman (1)

The summing technique has been in use since the first dis-
tributional semantic models (Landauer & Dumais, 1997) and
is effective at summarizing the meaning of sentences, para-
graphs, or documents (Mitchell & Lapata, 2010), even out-
performing sentence embeddings created using neural lan-
guage models if applied to tasks outside the neural model’s
training (Wieting, Bansal, Gimpel, & Livescu, 2016). But
summing word embeddings does not preserve word order.
Given the importance of word order to English syntax, a sum
is unlikely to be effective at discriminating sentence structure.

Permutation by absolute position: Permutation is used
in some models to encode word order (Cohen & Widdows,
2018; Recchia, Sahlgren, Kanerva, & Jones, 2015; Sahlgren,
Holst, & Kanerva, 2008). The simplest approach is to gener-
ate a different permutation for each position in the sentence.
For example, “Dog bites man” can be represented as:

s = P1wdog +P2wbites +P3wman (2)

where Pi is the permutation for the ith sentence position.
A permutation is a reordering of the elements of a vector,
such that the conjunction of an embedding and a permutation
serves as a unique representation of a word and a position.

Cohen and Widdows (2018) generate the first permutation
P1 randomly, then generate successive permutations by ran-
domizing half of the prior permutation. Cohen and Widdows
find that giving proximal sentence positions similar permuta-
tions improves the performance of word embeddings on syn-
tactic analogy tasks. Thus, we use Cohen and Widdows’s
technique for generating permutations in what follows.

Permutation by relative position: Encoding word order
by absolute position in a sentence is cognitively implausible.
McCoy, Frank, and Linzen (2018) found that neural language
models that learn to make predictions on the basis of absolute
sentence position tend to make inhuman errors when gener-
alizing learned grammatical rules to novel sentences. Kinder
(2010) similarly finds that exemplar-based language models
that use absolute position make qualitatively different judge-
ments of grammaticality than humans.

Cohen and Widdows (2018) use a sliding window, such
that positions are not relative to the start of the sentence, but
relative to the position of the window. To mimic a sliding
window, we permute each word embedding by each possi-
ble window position for that word in the given sentence. For
example, “Dog bites man” can be represented as:

s = P0wdog +P1wbites +P2wman+

P−1wdog +P0wbites +P1wman+

P−2wdog +P−1wbites +P0wman (3)

where we denote the centre of the window by the permutation
P0, window positions to the left of centre by negative indices,
and window positions to the right by positive indices.

Convolution: Circular convolution (∗) is used in holo-
graphic reduced representations to form associations (Plate,
1995). BEAGLE and HHM’s word embeddings use convo-
lution to represent word order. To construct sentence em-
beddings, we use the method from Jamieson and Mewhort
(2011)’s model of grammaticality judgements.

Each sentence is represented as a sum of n-grams, for n= 1
to 20. Each n-gram is constructed as the convolution of the
embeddings for the n words in the n-gram. To preserve the
order of the words in the n-gram, the left operand of convolu-
tion is permuted by the permutation Ple f t . For example, “Dog
bites man” can be represented as:

s = wdog +wbites +wman+

(Ple f twdog)∗wbites +(Ple f twbites)∗wman+

(Ple f t((Ple f twdog)∗wbites))∗wman (4)

BERT
Bidirectional Encoder Representations from Transformers
(BERT; Devlin et al., 2019) is based on the transformer archi-
tecture (Vaswani et al., 2017), which has largely supplanted
recurrent neural networks (RNNs) as the state-of-the-art in
natural language processing (e.g., Karita et al., 2019; Zeyer,
Bahar, Irie, Schlüter, & Ney, 2019). Sentence embeddings
derived from transformers, such as BERT and the Universal
Sentence Encoder (Cer et al., 2018), outperform sentence em-
beddings derived from earlier neural language models (e.g.,
ELMo, InferSent; Hassan, Sansonetti, Gasparetti, Micarelli,
& Beel, 2019). The distinct layers of BERT models have
been associated with different representations relevant to nat-
ural language processing (Tenney, Das, & Pavlick, 2019).

We use a pre-trained BERT with 12 hidden layers, each
with 768 dimensions3. Devlin et al. (2019) trained BERT on
English Wikipedia (2500 million words) and the BookCorpus
(800 million words). BERT is trained on half as much data as
GloVe, but 20x more data than HHM. To generate sentence
embeddings, we use the BERT-As-Service tool 4. BERT-As-
Service generates sentence embeddings by averaging the hid-
den states at a given layer over locations in the sentence. We
generate sentence embeddings for each hidden layer.

Spatial Separability
Sentence embeddings with different syntactic structures may
form distinct, linearly separable clusters in the high dimen-
sional space. To evaluate the spatial separability of the sen-
tence embeddings, we use the sensitivity index, d′, a statis-
tical measure of the separability of a signal from noise. The
sensitivity index is a function of the means, µS and µN , and
standard deviations, σS and σN , of the signal and noise distri-
butions, S and N:

3Pre-trained BERT: https://storage.googleapis.com/
bert models/2018 10 18/uncased L-12 H-768 A-12.zip

4BERT-As-Service: https://github.com/hanxiao/bert-as
-service
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Table 1: Separability of PO sentences by embedding.

Models sum abs. rel. conv.
Random 0.06 0.69 1.03 0.53
GloVe 0.69 0.69 0.85 0.41
BEAGLE 0.48 0.67 1.10 0.78
HHM 0.00 0.68 0.94 0.79

Table 2: Separability of DO sentences by embedding.

Models sum abs. rel. conv.
Random 0.00 0.31 0.25 0.08
GloVe 0.09 0.19 0.14 0.11
BEAGLE -0.18 0.36 0.37 0.30
HHM 0.00 0.24 0.22 0.39

d′ =
µS−µN

1
2

√
σ2

S +σ2
N

(5)

We use the vector cosine as the metric of similarity between
the sentence embeddings. The signal distribution is the cosine
similarities between all sentences of a given type. The noise
distribution is the cosine between sentences of a given type
and all sentences not of that type. A sentence type with a
higher d′ is more distinguishable from other sentence types.

In what follows, we compare the sensitivity index of the
sentence embeddings on the PO, DO, and other (non-PO,
non-DO) sentences. We then select the models with the high-
est sensitivity to assess on the active and passive sentences.

Distributional Semantic Models
Tables 1 and 2 shows the sensitivity index for four different
word embedding models on PO and DO sentences: randomly
generated vectors, BEAGLE, HHM, and GloVe. For each
model, we compare four ways of combining the embeddings
to construct a sentence embedding: summation, permutation
by absolute and relative position, and convolution.

Sum: Summing is the least effective, which is hardly sur-
prising, as the sum does not capture the structure of a sen-
tence, only what words occur within it. However, the ability
of the sum to separate PO from non-PO (Table 1) when pro-
vided with the right word embeddings (BEAGLE or GloVe)
suggests that certain words, such as the preposition to, make
separating PO from non-PO an easy problem. The preposi-
tion to occurs in 100% of the PO sentences but only 6% of
the DO sentences in our AMT data set.

Absolute position (abs.): Encoding word position
markedly improves separability for PO and DO sentences.
For randomly generated or GloVe embeddings, permuting by
absolute position yields the highest sensitivity index for DO
sentences (random: d′ = 0.31, GloVe: d′ = 0.19).

Relative position (rel.): For all models, permutation by
relative position produces the sentence embeddings that most
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Figure 1: Separability of PO and DO sentences by averaging
over BERT hidden layers.

easily separate PO from non-PO. Furthermore, relative posi-
tion encoding is approximately as sensitive as absolute po-
sition for discriminating between DO and non-DO when us-
ing BEAGLE or HHM. For both PO and DO sentences, the
distributions are more separable when using sentence embed-
dings sensitive to lexical semantics (BEAGLE vs. Random,
d′ = 1.10 vs. 1.03 for PO, d′ = 0.37 vs. 0.25 for DO).

Convolution (conv.): Using convolution to construct sen-
tence embeddings works well when using holographic vec-
tors (either BEAGLE or HHM). For HHM, convolution yields
the highest sensitivity for DO versus non-DO (d′ = 0.39).
However, convolution works poorly with GloVe embeddings,
performing even worse than summation on PO versus non-
PO (convolution: d′ = 0.41, sum: d′ = 0.69). Convolution
may be too reliant on the properties of the word embeddings
(see Kelly, Blostein, & Mewhort, 2013 for discussion) and is
perhaps best used with holographic vectors.

BERT
Figure 1 shows the sensitivity index for sentence embeddings
constructed as an average over time at different layers of
BERT. Hidden layers are numbered from 1, the layer imme-
diately after the input, to 12, the last layer before the output.

Layers close to the middle provide the most appropriate
representations to separate PO and DO sentences. Layer 7
has the highest sensitivity index for DO sentences, d′ = 0.37,
whereas layer 4 has the highest for PO sentences, d′ = 0.86,
though layer 7 also makes this discrimination well, d′ = 0.83.

Discussion
Of the methods for composing word embeddings to create
sentence embeddings that we consider here, convolution with
the HHM word embeddings achieves the highest sensitive in-
dex for DO versus non-DO (d′ = 0.39), followed closely by
BERT layer 7 and BEAGLE with relative position encoding
(both d′ = 0.37). For the PO versus non-PO, BEAGLE with
relative position encoding achieves the highest sensitivity in-
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dex (d′ = 1.10). Despite being trained on a corpus 40x larger,
GloVe embeddings are not more sensitive to the PO and DO
distinctions than HHM embeddings. For GloVe embeddings,
convolution is a poor method for constructing sentence em-
beddings, but both permutation methods work well.

Classification
As an alternate means of assessing the ability of each type of
embedding to discriminate PO and DO from non-PO and non-
DO, we train a classifier using each of the best performing
sentence embeddings. For each type of sentence embedding,
we use five-fold cross validation to train three generalized lin-
ear model regressions: one for classifying PO versus non-PO,
one for DO versus non-DO, and one for active versus passive
voice. For our Amazon Mechanical Turk (AMT) data, sen-
tences that begin with the same prompt are placed in the same
fold. For the Europarl corpus, each fold is assigned an equal
number of passive and active sentences, with the remaining
active sentences used at test. Table 3 shows classification ac-
curacy for the linear models. Percent correct for the PO and
DO linear models is the mean of the accuracy on PO, DO,
and other (non-PO, non-DO) sentences. Conversely, the third
linear model’s accuracy is shown as two separate columns:
accuracy on active and accuracy on passive sentences.

For PO and DO, classification accuracy largely mirrors the
sensitivity index of the models. However, we find that the
random model gets 100% correct on PO versus non-PO clas-
sification. The result suggests that knowing the presence and
location of the preposition to is sufficient for perfect PO clas-
sification in our AMT data set, and the addition of semantic
or part-of-speech (i.e., GloVe, BEAGLE, or HHM) merely
serves to add noise to the classification. Conversely, the ran-
dom model is the least accurate model for DO versus non-DO
classification, providing evidence that lexical semantics plays
an important role in detecting the DO sentence structure.

While BERT has a lower d′ than HHM with convolution
on DO sentences, BERT has a higher DO accuracy. The dis-
crepancy may arise from differences in BERT’s embeddings
compared to HHM’s holographic vectors. Holographic vec-
tors represent information holographically: all information is
fully distributed across all dimensions. Conversely, in neural
models, information may be distributed unevenly, such that
d′ may underestimate BERT’s ability to classify sentences.

Classification accuracy for active and passive voice is
lower than for PO and DO sentences. The best accuracy is
achieved by BERT (85% correct on active sentences, 87%
correct on passive sentences) followed by GloVe using rela-
tive position (83% correct on active, 78% correct on passive).

While absolute and relative position encoding work almost
equally well for GloVe on the PO and DO sentences, relative
position is slightly better at classifying the active and passive
sentences, likely due to sentence length. The Europarl sen-
tences are long. Knowing that a word is the 55th in a sentence
may not be useful for making classification decisions.

BEAGLE and HHM perform worse than GloVe on the pas-

Table 3: Classifier accuracy on PO versus DO and active
(Act.) versus passive (Pass.) across models.

Models PO DO Act. Pass.
Random rel. 100% 81% 73% 69%
GloVe rel. 91% 86% 83% 78%
GloVe abs. 92% 86% 79% 78%
BEAGLE rel. 92% 88% 80% 76%
HHM conv. 97% 93% 77% 74%
BERT layer 7 avrg. 98% 96% 85% 87%

sive and active sentences. We suspect the lower accuracy is
due to the many low frequency words in the Europarl corpus.
BEAGLE and HHM are trained on much less data than BERT
or GloVe, and as such, the embeddings for low frequency
words are based on fewer instances and are much noisier.

General Discussion
Sentence embeddings created using either distributional se-
mantic models or neural language models spatially separate
sentences with distinct syntactic structures.

We evaluate the psycholinguistic plausibility of four meth-
ods for composing word embeddings into sentence embed-
dings. The most common method, taking a sum of the word
embeddings, does not preserve word order, and as such, is
insufficient to account for English syntactic structure. Of the
three methods that do preserve word order, convolution works
best with HHM embeddings. In a convolutional model, sen-
tences are represented as a set of n-grams, where each n-gram
is constructed as a convolution of word embeddings (as de-
scribed in Jamieson & Mewhort, 2011; Jones & Mewhort,
2007). When using convolution, we find evidence that sen-
sitivity to more abstract relationships between words (HHM;
Kelly et al., 2017) provide additional useful information for
discriminating syntactic structure. However, the advantage
for HHM over BEAGLE is not robust, as it is not present
when using permutation to construct sentence embeddings.

Permutation by relative position in a sliding window is
consistently the best at discriminating PO from non-PO sen-
tences. Indeed, we find that randomly generated word em-
beddings combined using relative position encoding are suf-
ficient to get 100% accuracy on our AMT data set. However,
the ability to discriminate DO from non-DO sentences is im-
proved by the use of trained embeddings.

We find inconsistent performance for permutation by ab-
solute position. While it works reasonably well on the AMT
sentences, it works poorly on the long sentences of the Eu-
roparl corpus. Prior work has found that encoding word order
by absolute position in a sentence is cognitively implausible
(Kinder, 2010; McCoy et al., 2018). Thus we prefer permut-
ing by relative position, which proves to be an effective and
computationally efficient method of encoding word order that
is robust across different word embeddings.

We use the BERT language model to construct sentence
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embeddings as a mean of hidden layer activation values and
find that BERT yields the highest classification accuracy for
sentence type. However, distributional semantic models are
less computationally intensive and perform comparably well.

The best-performing BERT layer is exactly in the middle
of the network. This layer is likely the most abstract, as it
is the most removed from input or output. Similarly, the best
performing word embeddings on PO versus DO are the HHM
embeddings, which are sensitive to abstract, syntactic associ-
ations between words (Kelly et al., 2017).

Prior work has shown that semantic priming is predicted by
the distance between word embeddings (Günther et al., 2016;
Jones et al., 2006). Likewise, we find that the distances be-
tween sentence embeddings allow for the distinctions in syn-
tactic structure evidenced in syntactic priming. Sentence em-
beddings do not require a system that processes syntax dis-
tinct from semantics. Rather, sentence embeddings can be
constructed by composing word embeddings or by averaging
the activation in a language model’s hidden layer.

Conclusion
For the purpose of either natural language processing or mod-
elling human behaviour: (1) More abstract representations
extracted from the mid-layers of neural language models are
best able to account for syntactic distinctions; (2) Combining
word embeddings by permuting by relative position in a slid-
ing window produces robust sentence embeddings sensitive
to syntax; (3) The strong performance of HHM on DO sen-
tences suggests that convolution-based approaches, warrant
further investigation.

Our results suggest that more abstract representations
(HHM or BERT mid-layers) are better able to make the dis-
tinctions evidenced for in syntactic priming experiments (i.e.,
active versus passive voice or DO versus non-DO sentences).
However, some syntactic distinctions can be made trivial by
representations sensitive to the presence and location of func-
tion words (e.g., PO versus non-PO). We speculate that hu-
mans use information at varying levels of abstraction in lan-
guage processing, perhaps similar to a deep neural model. An
overall picture emerges of integrated representations with rich
connections between traditionally distinct layers (within and
across languages; Putnam, Carlson, & Reitter, 2018).

We leave as a matter of future work testing the methods of
word embedding composition we explore here on languages
with richer morphologies or free word order. Modelling lan-
guages with rich morphologies requires either using sub-word
embeddings or word embeddings sensitive to sub-word units
(e.g., Cotterell & Schütze, 2015). Free word order languages
typically use word order to convey non-syntactic information
(e.g., emphasis or new information), such that while preserv-
ing word order may not be important for syntax per se, order
remains important for conveying meaning.
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