Algebra decoded: individual differences in strategy selection when solving for 'x'

Jeffrey Bye

University of Minnesota, Minneapolis, Minnesota, United States

Rina Harsch

University of Minnesota, Minneapolis, Minnesota, United States

Sashank Varma

University of Minnesota, Minneapolis, Minnesota, United States

Abstract

Understanding variables and solving algebraic equations are essential to advanced mathematical thinking. Missingoperand problems (e.g., x + 3 = 5) are solvable via two strategies: 1) pattern-matching, or direct arithmetic fact retrieval (e.g., 2 + 3 = 5), and 2) algebraic symbol-manipulation, or performing the inverse operation (e.g., 5 = 2). U.S. undergraduates made speeded verifications of arithmetic sentences like 2 + 3 = 5 and 5 = 2. They then solved missing-operand problems like x + 3 = 5. We decoded individual differences in strategy choice by whether speed on missing-operand problems was better predicted by speed on verifying direct- or inverse-matched arithmetic facts. We found individual differences in strategy choice, although these were not significantly associated with mathematical achievement.