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Abstract 
Previous research has indicated that the way of learning and the 
sequence of study influence how we learn and represent 
categories. However, most studies have focused on 
classification learning and it has been rarely studied how 
learning sequence influences inference learning. The current 
study attempted to address this issue. Participants learned four 
categories by classification or inference in both blocked and 
interleaved sequence. Then participants completed a transfer 
task and a feature prediction task. Results showed that 
classification learners encoded characteristic features and 
formed similarity-based representations in the blocked study, 
whereas in the interleaved study, they encoded deterministic 
features and formed rule-based representations. In contrast, for 
inference learners, the blocked and interleaved study changed 
their learning and representation in the same direction. In both 
sequences, inference learners encoded deterministic features 
and formed rule-based representations. These results suggest 
that different mechanisms are likely to be involved for 
inference and classification learning. 

Keywords: category learning; sequence of study; inference; 
classification; attention; representation; human experiments 

 

Introduction 
People learn categories in a variety of ways. Some of this 
knowledge is taught as part of education, some is learned 
during daily activities, and some is acquired through 
extensive experience. There is a wide range of evidence 
showing that the way of learning (e.g., Yamauchi & 
Markman, 2000; Yamauchi & Markman, 1998; Markman & 
Ross, 2003;  Anderson, Ross, & Chin-Parker, 2002; Hoffman 
& Rehder, 2010; Deng & Sloutsky, 2015) and the sequence 
in which the items are presented (e.g., Clapper, 2014; 
Sandhofer & Doumas, 2008) affect how we learn and 
represent categories. However, it has been rarely studied how 
learning sequence influences category learning and 
representations under different ways of learning. The main 
goal of this study is to directly address this issue. 

Among various ways of learning categories, two of them-
classification and inference-have theoretical implications and 
have been studied systematically in laboratory research (e.g., 
Yamauchi & Markman, 2000; Yamauchi & Markman, 1998; 

Markman & Ross, 2003; Anderson, Ross, & Chin-Parker, 
2002). In classification learning, people predict the category 
membership of an item. This situation is similar to that of 
sorting a set of cats and dogs into two distinct groups. 
Whereas classification learning involves predicting category 
membership, inference learning involves predicting a feature. 
In this case, instead of determining whether an animal is a cat 
or a dog, people predict an unknown, missing, or 
unobservable feature (e.g., the type of sound the animal 
makes). There is evidence that classification learning and 
inference learning result in different allocation of attention to 
features (Hoffman & Rehder, 2010) and thus different 
representation of categories (Deng & Sloutsky 2015). For 
example, using eye tracking techniques, Hoffman & Rehder 
(2010) found that in contrast to inference learners who 
allocated attention to multiple dimensions, classification 
learners optimized attention to the deterministic dimension 
that distinguish between two categories. This attentional 
difference between classification learning and inference 
learning can further lead to differences in memory of features 
and representation of categories. For example, Deng & 
Sloutsky (2015) found that whereas classification learners 
were more likely to attend selectively to the deterministic 
features and to form rule-based representations of category, 
inference learners were more likely to attend diffusely, which 
resulted in similarity-based representations. 

Meanwhile, research on learning sequence has shown that 
the sequence in which items are presented also affects how 
we attend to, learn, and represent categories (Sandhofer & 
Doumas, 2008; Zaki & Salmi, 2019; Carvalho & Goldstone, 
2014, 2015a, 2015b, 2017). For example, Carvalho & 
Goldstone (2017) found that blocked and interleaved learning 
resulted in different allocation of attention to features and 
representation of categories. Specifically, if categories are 
learned blocked, learners tend to pay attention to similarities 
among items of the same category and encode characteristic 
features that are highly frequent within categories. In 
contrast, if categories are learned interleaved, learners tend to 
pay attention to differences between items and encode 
deterministic features that distinguish between categories.  
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However, most studies examining the effect of learning 
sequence have focused on classification learning of 
categories (Carvalho & Goldstone, 2014, 2015a, 2015b, 
2017; Zaki & Salmi, 2019). It is less clear how sequence 
would affect inference learning. We aim to address the issue 
in this study. 

Overview of The Current Study 
The goal of the current study is to examine how learning 
sequence influences category learning and category 
representation under classification and inference learning. 
We adopted a similar design by Carvalho & Goldstone 
(2017). The current study consisted of three phases: learning, 
transfer, and feature prediction. During the learning phase, 
participants learned two sets of two contrasting categories of 
artificial creatures by either predicting the category 
membership of an item (i.e., classification learning) or 
predicting a missing feature, precisely a deterministic feature 
(i.e., inference learning), and they were provided with 
feedback. Each category consisted of deterministic features 
distinguishing between categories and characteristic features 
that were common with the other category. For both 
classification and inference learners, two categories were 
presented in a blocked sequence, whereas the other two 
categories were presented in an interleaved sequence.  

The transfer phase was administered immediately after the 
learning phase. This phase was designed to examine how well 
participants learned the categories and on what basis they 
generalized to novel items. Similar to the learning phase, 
classification learners were asked to classify items by 
predicting the category membership, whereas inference 
learners were asked to predict a missing feature. However, 
there were three differences compared to the learning phase. 
First, feedback was not provided. Second, the order of the 
trials was randomized. And third, the trials consisted of old 
items shown in the learning phase, and novel items which 
were not presented before. Importantly, two critical types of 
novel stimuli were used in the transfer task: Characteristic-
Changed creatures and Characteristic-Preserved creatures. 
Both types of stimuli were composed of deterministic 
features which distinguished between categories, 
characteristic features which were common in both category 
members, and random features which were used to increase 
the number of unique creatures. There was one critical 
difference between the two types of stimuli: whereas the 
characteristic features were the same as the characteristic 
features in the learning phase for Characteristic-Preserved 
creatures, they were replaced by novel features for 
Characteristic-Changed creatures. If participants pay 
attention to within category similarities and encode the 
characteristic features, they should exhibit better 
performance for the Characteristic-Preserved stimuli than the 
Characteristic-Changed stimuli. Conversely, if participants 
optimize their attention to differences between categories and 
have a greater tendency to encode deterministic features, they 
should exhibit equivalent performance for the Characteristic-
Preserved and the Characteristic-Changed stimuli. 

   
Figure 1. Example of creatures for each category. 

 
       A.                                  B.  

                      
Figure 2. Example of stimuli in classification learning (A) and 
inference learning (B).  

 
Based on the review above, we predicted that learning 

sequence would have similar effect on classification and 
inference learning. Specifically, following blocked learning, 
classification and inference learners would exhibit better 
performance for Characteristic-Preserved stimuli than for 
Characteristic-Changed stimuli. That is, these participants 
would encode characteristic features better. In contrast, 
following interleaved learning, classification and inference 
learners would exhibit equivalent performance, and these 
participants will encode deterministic features.  

Finally, the feature-prediction phase was designed to 
examine the effectiveness of encoding different features in 
the course of learning. Participants were presented with 
learned and novel features and asked to rate the likelihood of 
features being part of a specific category on a 0-100 scale. 
For this phase, we also expected that learning sequence 
would have differential effect on classification and inference 
learning. Classification learners were expected to encode the 
characteristic features relatively more effectively in the 
course of blocked learning than interleaved learning. That is, 
characteristic features should be rated as category-relevant to 
a greater extent following blocked learning than interleaved 
learning. As for inference learners, we expected that they 
would encode the characteristic features equivalently 
effectively in both sequences of learning, by rating 
characteristic features as category-relevant equivalently 
following blocked and interleaved learning.  

Method 
Participants 

Participants were 60 University of Macau students (43 
women). They were tested in a quiet laboratory room on 
campus and participated for course credit. There were two 
between-subjects conditions (i.e., classification learning and 
inference learning), with 30 participants per condition. 
Informed consent was obtained from each participant.  

Stimuli 
The stimuli were images of four categories of artificial 
creatures. The creatures were distinct in their visual 
appearance. Each creature was composed of five feature-
dimensions (i.e., head, body, hands, feet, and antennae) and 
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had different feature values for each dimension. Figure 1 
shows examples of the four categories of creatures, and 
Figure 2 shows examples of stimuli used in classification and 
inference learning.  
    Except for the feature design (i.e., shape and color) for 
each dimension, the structure of creatures was similar to that 
used in Carvalho & Goldstone’s (2017). Each creature was 
composed of deterministic features, characteristic features, 
and a random feature. Deterministic features were highly 
discriminative but lowly characteristic of a category, whereas 
characteristic features were lowly discriminative but highly 
characteristic of that category. The distinction reflected how 
the two kinds of features were distributed among all the 
creatures presented in the same and the contrasting category, 
and it was adopted from research of categorization (e.g., 
Anderson, 1991; Murphy & Ross, 2005). In the learning 
phase, participants learned creatures with structures in Table 
1. As shown in the table, there were three possible feature 
values in Feature 1-3. Value 2 and Value 3 predicted the 
category membership and were deterministic features. Value 
1 was a characteristic feature frequently shown across both 
category members and did not predict the category 
membership. There were also three possible feature values 
for Feature 5. However, the three values did not predict 
category membership. These were used as random feature to 
increase the number of unique creatures. The four categories 
used in this study shared the same category structure. Two 
categories of creatures were randomly selected to be learned 
blocked and the other two categories were learned 
interleaved. Each category was given a unique novel label. 

In the transfer phase, there were three types of stimuli in 
both learning conditions. 1/3 were creatures previously 
learned in the learning phase. 1/3 were creatures distinctive 
from the learned creatures only in the values of Dimension 5 
(Characteristic-Preserved stimuli). The rest were creatures 
distinctive from the learned stimuli in the values of Feature 5 
as well as the values of the characteristic features 
(Characteristic-Changed stimuli). Novel stimuli were 
composed of Characteristic-Preserved and Characteristic-
Changed stimuli. Table 2 demonstrates a category structure 
of novel stimuli for one category used in the transfer phase. 
Note that the four categories shared the same category 
structure of novel stimuli used in the transfer phase. 

In the feature prediction phase, participants were presented 
with images of four types of features: characteristic features 
shown in the learning phase, deterministic features, features 
that were presented for the first time during the transfer phase 
to replace the learned characteristic features, and novel 
features that had never been presented during the learning or 
transfer phases. 

Design and procedure  
Participants were randomly assigned to the classification or 
inference condition. All participants were instructed to 
respond as accurately and fast as possible. In both conditions, 
participants learned four categories. Two categories were 
learned in blocked sequence and the other two categories 

Table 1. Category structure of the stimuli used in the learning and 
transfer phases. Note that a feature value represents a specific 
feature. Feature values are independent across features (e.g., the 
value 1 in Feature 1 is not the same as the value 1 in Feature 2). 
 

  Feature 
Category Item 1 2 3 4 5 

A 1 2 1 1 1 4 
A 2 2 1 1 1 5 
A 3 2 2 1 1 3 
A 4 1 2 1 1 3 
A 5 1 2 2 1 5 
A 6 1 1 2 1 4 
A 7 1 1 2 2 4 
A 8 1 1 1 2 3 
A 9 1 1 1 2 5 
B 1 3 1 1 1 4 
B 2 3 1 1 1 5 
B 3 3 3 1 1 3 
B 4 1 3 1 1 3 
B 5 1 3 3 1 5 
B 6 1 1 3 1 4 
B 7 1 1 3 3 4 
B 8 1 1 1 3 3 
B 9 1 1 1 3 5 

 
Table 2. Category Structure for the Novel Stimuli of One of the 
Categories in Transfer Task 
 

  Feature 
Category Item 1 2 3 4 5 

A Characteristic-changed 2 4 4 4 6 
A Characteristic-changed 2 4 4 4 7 
A Characteristic-changed 2 2 4 4 6 
A Characteristic-changed 4 2 4 4 7 
A Characteristic-changed 4 2 2 4 6 
A Characteristic-changed 4 4 2 4 7 
A Characteristic-changed 4 4 2 2 6 
A Characteristic-changed 4 4 4 2 7 
A Characteristic-changed 4 4 4 2 6 
A Characteristic-preserved 2 1 1 1 6 
A Characteristic-preserved 2 1 1 1 7 
A Characteristic-preserved 2 2 1 1 6 
A Characteristic-preserved 1 2 1 1 7 
A Characteristic-preserved 1 2 2 1 6 
A Characteristic-preserved 1 1 2 1 7 
A Characteristic-preserved 1 1 2 2 6 
A Characteristic-preserved 1 1 1 2 7 
A Characteristic-preserved 1 1 1 2 6 

 
were learned in interleaved sequence. The order of learning 
sequence was counterbalanced across participants. There 
were three phases (i.e., learning phase, transfer phase and 
feature-prediction phase). The three phases were presented in 
the same order for all participants. All participants started by 
learning two categories in one of the two learning sequences, 
followed by a transfer task, and then a feature-prediction task. 
Then, participants completed the three phases with another 
two categories and the other learning sequence.  
    In the learning phase, participants were told that there were 
alien creatures with unique names. In the classification 
condition, participants were instructed to predict the category 
membership (i.e., the label) of an item and they were 
provided with information about all the features. In contrast, 
in the inference condition, participants were instructed to 
predict a missing feature of an item. These participants were 
given information about the remaining features and the label. 
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In both conditions, there were 36 learning trials (9 trials per 
category). Specifically, in the blocked learning, participants 
learned one block containing only one category of creatures, 
followed by another block with creatures from the contrasting 
category. In the interleaved learning, participants learned a 
creature from one category followed by a creature from the 
contrasting category. Each learning trial was accompanied by 
feedback. The order of the assigned creature on each learning 
trial was randomized across participants in both conditions.  
    The transfer phase was similar to the learning phase, with 
the participants in the classification condition predicting the 
category membership of a given item and those in the 
inference condition predicting a missing deterministic feature 
of an item. In both conditions, there were 108 trials (27 trials 
per category). All trials were presented randomly and no 
feedback was provided. 
    Finally, in the feature-prediction phase, participants in 
both classification and inference conditions were asked to 
rate the likelihood of features being part of a specific category 
on a 0–100 scale. A rating of 0 indicated that it was 
impossible that the feature belonged to a certain category, 
whereas a rating of 100 indicated that the feature definitely 
belonged to a certain category. There were 80 trials (20 trials 
per category), and all trials were presented randomly. 

Results 
Learning Phase All participants were asked to learn four 
categories by classification or inference in this phase. The 
learning accuracy was collected. For classification condition, 
five participants were given wrong task during the learning 
phase, and one failed to complete the feature prediction task. 
Data from these participants were excluded from the 
following analyses. For inference condition, one participant 
in the transfer task was three standard deviations below the 
mean accuracy in the last 8 interleaved learning trials, and 
data from this participant were excluded from the analyses. 
A 2 (Learning Regime: Classification vs. Inference) × 2 
(Learning sequence: Blocked vs. Interleaved) mixed 
ANOVA revealed a main effect of learning regime, F (1, 52) 
= 4.90, MSE = 0.22, p = 0.03, with inference learners being 
more accurate than classification learners. Neither the main 
effect of learning sequence (p = 0.154) nor the interaction was 
significant (p = 0.463). We further analyzed the data for 
classification and inference learning respectively in order to 
examine the dynamics of learning in two learning regimes.  

For classification learning, data were aggregated into two 
blocks. One block consisted of the first 5 trials for each 
category, and the other block consisted of the rest 4 trials for 
each category. As shown in table 3, participants exhibited 
above chance level of learning in the last 4 trials for blocked 
sequence, one-sample t(23) = 4.85, p < .001, but not for 
interleaved sequence, one-sample t(23) = 1.74, p = 0.10. In 
addition, participants exhibited higher accuracy in the last 4 
learning trials than the first 5 trials in blocked learning, 
paired-samples t(23) = 4.69, p < .001, whereas learning 
accuracy did not significantly improve between two blocks in 
the interleaved learning, p = 0.16. 

Table 3. Learning Data. Mean accuracy aggregated in 5- or 4- Trial 
Blocks for Classification and Inference Learning. 

 
    Similarly, data of inference learning were aggregated into 
two blocks (i.e., first 5 trials vs. last 4 trials for each 
category), and these data were shown in table 3. Similar to 
classification learners, inference learners exhibited above 
chance level of learning in the last 4 trials for both blocked 
(one-sample t(28) = 9.48, p < .001) and interleaved sequence 
(one-sample t(28) = 3.80, p = .001). Furthermore, these 
participants exhibited higher accuracy in the last 4 learning 
trials than the first 5 trials in both blocked learning (paired-
samples, t(28) = 4.34, p < .001) and interleaved learning 
(paired-samples, t(28) = 3.64, p = .001).  

Taken together, learning data indicated that both 
classification learners and inference learners learned the two 
sets of contrasting categories, with inference learners 
performed somewhat better than the classification learners. 
 
Transfer Phase The transfer task was used to examine the 
effect of learning sequence on category representations. If 
participants form similarity-based category representations in 
the sequence of classification learning, as we predicted, the 
performance for the Characteristic-Changed stimuli and the 
Characteristic-Preserved stimuli should be equivalent. In 
contrast, if participants form rule-based category 
representations during the learning phase, performance for 
the Characteristic-Changed stimuli should be worse than the 
Characteristic-Preserved stimuli. The transfer accuracy was 
collected and are shown in Figure 5. The average 
performance across participants for both characteristic-
changed and characteristic-preserved stimuli in different 
learning sequences (i.e., blocked and interleaved learning) 
were calculated. Data were analyzed with a 2 (Stimuli Type: 
Characteristic-Changed stimuli vs. Characteristic-Preserved 
stimuli) × 2 (Learning Sequence: Blocked vs. Interleaved) × 
2 (Learning Regime: Classification vs. Inference) mixed 
ANOVA. There was no significant three-way interaction (p 
= 0.92). However, a two-way interaction between learning 
regime and learning sequence was found, F (1, 104) = 20.24, 
p < .001.  We further broke down the analysis by conducting 
a mixed ANOVA on stimuli type and learning sequence for 
each learning regime.  

For classification learning, the overall effect of learning 
sequence was not significant (p = 0.69). Neither the type of 
stimuli (p = 0.61) nor the interaction between learning 
sequence and type of stimuli (p = 0.27) was significant.  
Participants’ performance for the Characteristic-Changed 
and the Characteristic-Preserved stimuli following both 
blocked and interleaved learning did not achieve above-
chance level (p = 0.16). These results were unexpected and 
we further discussed it in the Discussion. 

Learning 
Regime                               

Learning 
Sequence Trials 1-5 Trials 6-9 

Classification Blocked 0.49 (0.12) 0.70 (0.20) 
Classification Interleaved 0.55 (0.27) 0.60 (0.28) 
Inference Blocked 0.63 (0.19) 0.79 (0.16) 
Inference Interleaved 0.59 (0.24) 0.68 (0.24) 
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A. Classification condition 

 
B. Inference condition 

 
Figure 3. Accuracy of the transfer task in the classification 
learning condition (A) and the inference learning condition (B). 
Chance level is 0.5. Error bars represent ±1 standard error of 
mean. 

 
 
 

A. Classification condition 

 
 

B. Inference condition 

     
Figure 4. Ratings for features in the feature prediction task in the 
classification condition (A) and the inference condition (B). Error 
bars represent ±1 standard error of mean. 

 

For inference learning, the overall effect of learning 
sequence was significant, F (1, 28) = 4.68, p = 0.03. 
Participants performed better for the transfer task after 
blocked learning (M = .73, SD = .24) than that after 
interleaved learning (M=.63, SD = .23).  Neither the type of 
stimuli (p = 0.88) nor the interaction between learning 
sequence and type of stimuli (p = 0.98) was significant. In 
addition, participants’ performance for the Characteristic-
Changed and the Characteristic-Preserved stimuli was above 
chance following both blocked (one-sample t (28) = 5.27, p 
< .001) and interleaved learning (one-sample t (28) = 3.17, p 
= .004). The results suggested that inference learners formed 
rule-based category representations in the course of blocked 
and interleaved inference learning. 
 
Feature Prediction Phase The feature prediction task was 
used to examine whether the learning sequence changed the 
perceived relevance of different features. Participants rated 
how predictive a feature was of a particular category. If 
learning sequence has an impact on the perceived relevance 
of features, as discussed in the Introduction, there should be 
an interaction between types of features and learning 
sequence. Characteristic features should be rated as relevant 
for categorization to different extents following different 
learning sequences. If learning sequence does not influence 
the perceived relevance of features in inference condition, 
there should be no interaction between types of features and 
learning sequence. Participants should rate characteristic 
features as relevant for categorization equivalently following 
different learning sequences.  

Feature ratings were collected and shown in Figure 4. Data 
were analyzed with a 2 (Feature Type: Deterministic Features 
vs. Characteristic Features) × 2 (Learning Sequence: Blocked 
vs. Interleaved) × 2 (Learning Regime: Classification vs. 
Inference) mixed ANOVA. There was a significant three-
way interaction, F (1, 104) = 27.71, p < .001. We broke down 
the interaction by conducting a mixed ANOVA on feature 
type and learning sequence for each learning sequence.  
    For the classification condition, a significant interaction 
between learning sequence and type of features was found, F 
(1, 23) = 11.46, p = .001. Post hoc t test indicated that the 
average rating for Characteristic Features (M = 54.93, SD = 
3.53) was higher than Deterministic Features (M = 41.50, SD 
= 3.70) after the blocked learning, t (23) = 2.68, p = .01, 
whereas following the interleaved learning, participants rated 
higher for Deterministic Features (M = 50.61, SD = 2.57) than 
Characteristic Features (M = 43.28, SD = 3.05), t (23) = 2.05, 
p = .03. Therefore, the results indicated that, in classification, 
the learning sequence changed the perceived relevance of 
features. These findings, consistent with our predictions, 
suggested that classification learners encoded characteristic 
features relatively more effectively following the blocked 
learning, whereas following the interleaved learning, they 
encoded deterministic features relatively more effectively.  

For the inference condition, a significant interaction 
between learning sequence and type of features was found, F 
(1, 28) = 7.28, p = .008. Pairwise t test indicated that 
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participants rated higher for Deterministic Features than 
Characteristic Features after blocked learning, t (28) = 6.56, 
p = .001, and interleaved learning, t (28) = 3.04, p = .002. 
Inference learners encoded the characteristic features 
equivalently effectively following both sequences of 
learning, t (28) = 2.05, p = .12. However, participants 
encoded the deterministic features more effectively following 
blocked learning (M = 69.53, SD = 4.40) than interleaved 
learning (M = 56.38, SD = 4.31), t (28) = 2.41, p = .01. 
Therefore, in contrast to classification learners, for inference 
learners, learning sequence did not change the perceived 
relevance of the characteristic features but changed the 
perceived relevance of the deterministic features.  

Taken together, the results in the feature prediction task 
corroborates findings from the transfer task: whereas 
classification learners encoded characteristic features more 
effectively in the blocked learning and encoded deterministic 
features more effectively in the interleaved learning, 
inference learners, regardless of the learning sequence, 
encoded deterministic features more effectively. 

Discussion 
In the study reported here, we investigated how learning 
sequence influences category learning and representations 
under classification and inference learning. The current study 
reveals one important and novel finding pointing to the 
differential effect of learning sequence on category learning 
under different regimes. Specifically, classification learners 
are more likely to encode characteristic features and form 
similarity-based representations in the blocked study, 
whereas in the interleaved study, they tend to encode 
deterministic features and form rule-based representations, In 
contrast, for inference learners, the blocked and interleaved 
study changed their learning and representation in the same 
direction. That is, in both sequences, inference learners are 
more likely to encode deterministic features and form rule-
based representations. The finding with inference learners is 
in sharp contrast with previous research (e.g., Hoffman & 
Rehder, 2010; Deng & Sloutsky, 2015) showing that 
inference learners tend to encode multiple features and form 
similarity-based representations. 

One explanation for this finding is that, in the current study, 
inference learners were asked to predict the deterministic 
features which were closely related to the rule for making 
inference of the missing deterministic features. This is likely 
to shift participants’ attention to the deterministic features. In 
the sequence of blocked learning, participants successively 
learned category members from the same category and 
encoded deterministic features effectively. They learned the 
contrasting category in the similar way and then formed rule-
based category representation in the course of learning. 
Conversely, in the sequence of interleaved learning, 
participants learned categories by contrasting the 
deterministic features and formed rule-based representation. 
Therefore, following both blocked and interleaved learning, 
inference learners encoded the deterministic features better 
than the characteristic features and formed rule-based 

representation. Further research is required to directly 
examine the attentional changes in category learning. 

There are several important issues that have not been 
addressed by current study and will require further research. 
One main issue pertains to the relatively poor performance of 
classification learners in this study, and this is likely to result 
in the inconsistent results for classification learners compared 
to previous research. Specifically, in the current study, 
participants in the classification condition did not learn well, 
which highly contrasted with previous findings (Carvalho, & 
Goldstone, 2017) in which participants consistently exhibited 
higher than 60% of accuracy regardless of learning 
sequences. In addition, the classification leaners did not 
exhibit equivalent learning performance compared to the 
inference learners, which contrasted to previous research in 
which classification learners usually learnt better than 
inference learners (e.g., Deng & Sloutsky, 2015). One 
possible explanation for the results is that even though the 
structure of the categories in the current study was similar to 
that in previous study, the feature values (i.e., the color and 
shape of the features) in this study were not highly distinct 
between each other, which was likely to require more effort 
for participants to encode features, and hence to decrease the 
accuracy during the transfer phase.  

Another explanation for the results is that the learning task 
was likely to be difficult for the participants to acquire the 
rule in classifying items in both learning sequences. Evidence 
for this explanation comes from studies suggesting that 
category structure matters to classifying items (Yamauchi, 
Love, & Markman, 2002). That is, classification learners 
failed to have a good summary of all category members 
because of the category structure applied in this study. 
However, even though during the transfer phase, 
classification learners did not achieve above-chance level in 
the transfer phase, the learners exhibited more effective 
encoding of characteristic features following blocked 
learning and deterministic features following interleaved 
learning during the feature prediction phase.  

Furthermore, the developmental changes in category 
learning of different sequences under classification and 
inference regimes have not been addressed. Research has 
shown that there is a developmental difference in category 
learning by classification and inference (Deng & Sloutsky, 
2015). In contrast to adults who tend to treat classification 
and inference learning differently, young children tend to 
treat these two learning regimes equivalently. Future 
developmental research will be needed to examine whether 
the sequence of learning would have similar effect on 
children’s category learning under different learning regimes. 
By examining developmental changes of these effects, we 
would be better positioned at characterizing the attentional 
mechanisms underlying category learning. 
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