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Abstract
Many cognitive assessments are limited by their reliance on
relatively sparse measures of performance, like per-item ac-
curacy or reaction time. Capturing more detailed behavioral
measurements from cognitive assessments will enhance their
utility in many settings, from individual clinical evaluations
to large-scale research studies. We demonstrate the feasibility
of combining scene and gaze cameras with supervised learn-
ing algorithms to automatically measure key behaviors on the
block design test, a widely used test of visuospatial cognitive
ability. We also discuss how this block-design measurement
system could enhance the assessment of many critical cogni-
tive and meta-cognitive functions such as attention, planning,
progress monitoring, and strategy selection.

Introduction
The meat of the matter is often how a patient solves a problem or

approaches a task rather than what the score is.
(Lezak et al., 2012, Neuropsychological Assessment, p. 160)

Consider a cognitive assessment like the block design test
(BDT), as shown in Figure 1 (top), in which a person has to
reconstruct a given visual design using red and white blocks.
Suppose you administer the BDT to two participants, and they
both get the same score in terms of accuracy (items correctly
built) and reaction time. Do these scores imply that your two
participants have similar visuospatial cognitive ability?

Now suppose you watch each participant as they perform
the test. The first participant methodically places each block
exactly once, making no errors as they complete each item.
The second participant (who is working at a much more fre-
netic pace—same per-item reaction time, remember) places
each block many times, continually checking and changing
and re-checking each placement, but finally obtaining with
the correct answer in the end. Now would you say that your
two participants have similar visuospatial cognitive ability?

We might quibble about the meaning of the word “ability”
here, but certainly there are significant cognitive differences
between the two participants, however we might label them.

Invariably, when a cognitive assessment boils a person’s
behavior down to one or two scores, there is information
being lost about how that person performed the assessment
(Milberg et al., 2009; Poreh, 2012; Kunda, 2019). Of course,
a person’s cognitive processes are not directly observable.
However, we can get clues about these processes by obtaining
fine-grained observations about a person’s externally observ-
able behaviors while they are taking the assessment. Exam-
ples of such behaviors include: patterns of eye gaze; reaction

Figure 1: Top: Solving a BDT-like item. Bottom: Multi-
modal sensing to measure significant behaviors on the BDT.

times (i.e. per-item or even within-item); types of errors; lan-
guage (e.g. talking to oneself while solving an item); and
even affective or physiological characteristics like facial ex-
pression, heart rate, and skin conductance.

Many research efforts aim to measure fine-grained behav-
iors on cognitive assessments using computerized setups that
can easily record reaction times for every key press, mouse
movement logs, and eye gaze data. However, many impor-
tant cognitive tests are not amenable to being computerized,
including (but not limited to) tests in the domain of visuospa-
tial reasoning that draw heavily upon a person’s motor func-
tions and/or abilities to reason about physical objects.

Here, we examine the feasibility of using multimodal sens-
ing to obtain detailed behavioral measurements from a non-
computerizable cognitive assessment, namely the block de-
sign test (BDT). Our contributions are: (1) We show how
data from an overhead camera plus a corneal-image-based
gaze measurement system, with manual annotations, suffice
for capturing a comprehensive record of a person’s BDT per-
formance. (2) We demonstrate that standard supervised learn-
ing algorithms can be used to classify a person’s block place-
ments (>95% accuracy) and gaze targets (∼70% accuracy).
(3) We provide examples from our participant study of the
kinds of process-level observations enabled by our multi-
modal measurement approach.
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Why Block Design Is a Good Test Case
The block design test (BDT) is a widely-used assessment of
visuospatial cognitive ability. The BDT is found on many
standardized IQ tests and has been used to study learning dis-
abilities like dyslexia , neurodevelopmental conditions like
autism , general child development , cognitive decline dur-
ing aging or after stroke , cultural differences in cognition ,
relationships between spatial ability and STEM learning , etc.

In its standard format, the BDT is scored in terms of ac-
curacy and reaction time for each completed target design.
However, many research studies have observed that subtle
patterns of behavior on the BDT provide intriguing clues
about a person’s cognitive processes.

For example, patterns of gaze between the target design
and the block construction area can indicate individual dif-
ferences in strategy (Hoffman et al., 2003; Rozencwajg &
Corroyer, 2002; Rozencwajg et al., 2005; Rozencwajg &
Fenouillet, 2012). The errors a person makes while solv-
ing BDT items have been studied in terms of particular se-
quences of block placements (Joy et al., 2001; Rozencwajg &
Corroyer, 2002; Toraldo & Shallice, 2004), incorrect place-
ments of blocks (Ben-Yishay et al., 1971; Hoffman et al.,
2003; Jones & Torgesen, 1981; Joy et al., 2001; Schatz et
al., 2000; Troyer et al., 1994), and qualitative types of errors
(Akshoomoff et al., 1989; Akshoomoff & Stiles, 1996; Joy
et al., 2001; Kramer et al., 1991, 1999; Schatz et al., 2000;
Troyer et al., 1994; Zipf-Williams et al., 2000).

Despite the known value of measuring a person’s patterns
of gaze, block placements, errors, etc., on the BDT, such in-
formation is rarely collected in practice, mainly due to the
difficulty of recording such data accurately and in real time
while also administering the test (Milberg et al., 2009). In
fact, the original BDT scoring system published in 1920 in-
cluded tallying the number of block placements made, (Kohs,
1920), but by 1932, this method was deemed too cumbersome
for practice and was dropped (Hutt, 1932).

For all of these reasons, the BDT is an ideal test case on
which to evaluate our multimodal sensing approach.

System Design and Task Setup
We designed our system to use two sensors. First, an over-
head camera recorded a top-down view of the table used
for test administration; these images were used for detec-
tion of block placements. Second, a corneal imaging system
recorded images of the world reflected in the cornea of the
participant; these images were used for estimation of gaze
targets. Due to the limited field of view of our corneal imag-
ing system, participants were asked to use a chin rest to elim-
inate large head movements. The system and task setup is
illustrated in Figure 2.

We collected data from undergraduate computer science
students (n = 7) who were not members of our research team.
All necessary IRB approvals were obtained for this study.
Each participant in our study was asked to complete 17 dif-
ferent block design items. Of these items, 13 were taken from

the standard Wechsler block design test and the remaining 4
were slightly more complex designs created for our study. All
analyses reported in this paper use only the final 6 out of 17
items, as these were the most difficult and showed the greatest
variability in participant performance.

Block Detection from Overhead Camera
The overhead camera was a Kinect RGB-D camera posi-
tioned near ceiling height. We did not use depth information
for the analyses presented in this paper, though the inclusion
of depth information could help with automated detection of
hands and blocks in future work.

Overhead videos were manually annotated using the
ELAN software tool. Annotations included individual block
placement locations and block faces (e.g., empty, white,
red, etc.).Annotations also included transition periods during
which any block was in motion. For our pilot study, annota-
tions were completed by a single annotator, as there were no
significant issues with ambiguity in labeling.

Automated Block Detection: Methods
As shown in Figure 3, our system for automated block detec-
tion took overhead videos as input and produced frame-level
block placement labels as output.

Hand detection and smoothing. Based on initial exper-
iments, we determined that a key source of noise for the
problem of frame-level block placement detection was partic-
ipants’ hands and/or the blocks they were carrying occluding
portions of the construction area. To address this issue, we ex-
perimented with methods for automated detection of hands so
that we could filter out these frames.Among the many avail-
able options, we chose to use the Single Shot Multibox Detec-
tor (SSD) MobileNet network available from the Tensorflow
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Figure 2: System setup. View shown is from overhead cam-
era, which records information for measuring block place-
ments. Corneal imaging camera, located across table from
participant, records information for measuring gaze.
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Figure 3: Automated detection of block placements using overhead video. (a) Inputs are individual frames. (b) Regions
occluded by participants’ hands are filtered out through hand detection using the Tensorflow Object Detection API (Huang
et al., 2017). The SSD Mobilenet network (Liu et al., 2016) was pre-trained on COCO and re-trained for hand detection
on the Egohands Dataset (Bambach et al., 2015). Frames having Intersection over Blue (IoB) greater than 0.3 were filtered
out. (c) Blue contour was localized and rectified through OpenCV geometric image transformation functions (Bradski, 2000).
(d) Rectified image of blue contour area is divided into n× n block-sized sub-images, which are fed through neural network
classifier to obtain the final block label, as shown in (e).

Object Detection API (Huang et al., 2017), pre-trained on the
COCO dataset (Liu et al., 2016) and then re-trained for hand
detection using the EgoHands dataset (Bambach et al., 2015).

Then, for frames with a large overlap of hands over the
construction area, we set the current frame’s block labels to
be equal to those of the previous frame, i.e., a smoothing op-
eration to interpolate over frames with occlusion from hands.

Locating the construction area. Next, we identified the
construction area in each frame. This area was outlined with
colored tape on the tabletop to simplify the vision processing
in this initial pilot study. In future studies, we will remove
this simplification, as it is not a standard procedure for the
BDT. Though the overhead camera was fixed in our study,
movements of the physical table and of the green tabletop
sheets meant that the position of the construction area could
(and often did) change from item to item.

The blue contour was located using blue HSV thresholds
and processed to correct for rotations using standard trans-
formations from the OpenCV library (Bradski, 2000).Finally,
the cropped and rotated image of the construction area was
divided into n× n sub-images, depending on the size of the
given block design test item (either 3×3 or 4×4). Each sub-
image was then fed into a classifier, as described below.

Block classification. We explored several techniques to
classify each block sub-image into categories identifying the
top-most block face and its orientation.

RGB Averaging. Each block-sized sub-image was first di-
vided into four diagonal quadrants. Then, each quadrant’s
pixel values were averaged in each respective RGB channel
and compared with a threshold value of 140 to determine the
quadrant color. The threshold was set empirically based on
initial experiments. Identifying the color within a segment of
each quadrant uniquely determines the overall block label.

K-Means Clustering. We clustered pixel values within each
color channel to acquire the dominant RGB value in each

quadrant (Kanungo et al., 2000). We tested this approach with
K = 1 and K = 4, and kept the threshold of 140.

K-Nearest Neighbors (KNN). We used synthetic red, white,
and green color images (10 each) as training data for this ap-
proach. Then, color histograms of each color channel and the
corresponding color were recorded to train a KNN classifier
(Cover & Hart, 1967).

Multi-Layer Perceptron. We also trained a Multi-Layer
Perceptron (MLP) for block label classification. Data in-
stances were flattened to a 1D tensor and was fed into a three-
layer fully connected MLP. Dropout was inserted in between
every layer to reduce overfitting. ReLU was used as the acti-
vation function for the first two layers, and a softmax function
was used for the last fully-connected layer. The network was
optimized using Stochastic Gradient Descent with an initial
learning rate of 0.01. Training proceeded for 10 epochs.

Results. Table 1 shows accuracy across all of our methods.
For all methods except MLP, results are reported as accuracy
over all frames from the dataset. For MLP, accuracy is ob-
tained by 7-fold cross validation in which all of the data from
a single participant was held out for evaluation during each
fold. Clearly, the data-driven MLP approach performs best.

Table 1: Accuracy results for different approaches.

Category Method Accuracy

Color Determination

RGB Averaging 0.68
K-Means Clustering (k=1) 0.68
K-Means Clustering (k=4) 0.64

K-Nearest Neighbors 0.67

Hand Filtering Block in Motion 0.73
Hand Bounding Box 0.69

Post Processing Smoothing with RGB Averaging 0.81

ML-based MLP (+ hand bounding box) 0.96
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Figure 4: Sample corneal images from our study. Dark eyes
(left) produce reflections across the entire iris, while lighter
eyes (right) produce reflections just over the pupil.

Gaze Estimation Using Corneal Imaging
Eye gaze is another behavioral measure that would be useful
to obtain on the block design test (BDT). Because the BDT
involves manual interactions with physical objects, we cannot
use standard monitor-based eye trackers to measure gaze. For
such tasks, head-mounted gaze trackers are currently the pri-
mary, commercially available option. While head-mounted
gaze trackers are valuable in many settings, special usability
concerns can arise in applications involving children or peo-
ple with sensory sensitivities (Sasson & Elison, 2012).

Thus, we investigated gaze tracking using corneal imaging,
which captures images of the world reflected in a person’s
cornea (Chong et al., 2017; Nakazawa & Nitschke, 2012;
Nishino & Nayar, 2006). Corneal imaging requires relatively
little calibration, and the image provides a wide field of view
that moves along with the participant’s head. Most impor-
tantly, participants do not have to wear any equipment.

For our study, we used a single high resolution camera
equipped with a lens that had a narrow field of view and a
shallow depth of field. A second wide angle depth camera
was used to estimate the distance between the eye and the
corneal imaging camera, to enable auto-focusing. To reduce
large head movements, we asked participants to use a chin
rest. In future studies, a bank of corneal image cameras could
instead be used to capture a wider field of view.

Videos of the corneal image recordings were annotated
with the ELAN Annotation Tool by members of our research
team. The annotation involved marking intervals of frames
with the gaze target (block bank, construction area, target de-
sign, or “other”), blink state of the eye (blink vs. non-blink),
and gaze event (saccade or smooth pursuit).

Unlike annotations of the overhead video to identify block
placements, the corneal imaging annotations were both time
consuming and subject to ambiguity. Among four raters, re-
liability estimates for various BDT items, calculated using
Cohen’s kappa, ranged from 0.66 to 0.80.

We expect that reliability could be improved in several
ways. First, while annotations were defined as time intervals
over video, reliability was computed frame by frame, and so
a more appropriate reliability metric should also use inter-
vals. Second, our annotation process unfolded in mostly a
feed-forward fashion; we did not yet have annotators meet to
discuss and resolve discrepancies. With these modifications,
it is likely that videos from a corneal-imaging-based system
could be annotated to provide more reliable gaze estimates.

Table 2: Results for automated gaze classification. Corneal
images were classified as blink vs. non-blink. Non-blink
images were further classified according to gaze target, i.e.,
block bank, construction area, target design, or “other.” Re-
sults are reported as proportion of frames correctly classified.

Image-based blink classification Accuracy Precision

Within-participant, across BDT item 0.81 0.59
Across participants 0.65 0.41

Image-based gaze classification

Within-participant, across BDT item 0.69 0.55
Across participants 0.51 0.45

Geometric gaze classification with KNN

Within-participant, across BDT item 0.77 0.66
Across participants 0.61 0.54

Geometric gaze classification with MLP

Within-participant, across BDT item 0.71 0.41
Across participants 0.64 0.37

Automated Gaze Estimation: Methods and Results
We explored two different methods for automatically estimat-
ing gaze targets from our corneal imaging videos.

Method 1: Using image information with a CNN. We
used a pre-trained convolutional neural network (CNN) on the
images obtained directly from the corneal imaging camera.
The images fed to the classifier were not unwarped and the
other visible parts of the eye in the frame remained intact.

Two CNNs were trained: one for predicting gaze target
locations and one for detecting blinks. All classifiers took in
the raw image pixels as captured from the corneal imaging
camera without any modifications. A pre-trained copy of the
Inception v3 (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna,
2016) convolutional neural network running with Tensorflow
v1.9 (Abadi et al., 2016) was used as the classifier.

Method 2: Using geometric information. Next, we di-
rectly considered the geometric information extracted when
the ellipse model was fit onto the frame, using an existing
ellipse fitting approach (Chong et al., 2017). The ellipse pa-
rameters consists of five separate values which represent the
geometry of the ellipse fit onto the limbus in the eye frame.
For this approach, we used corneal image data from just two
participants; future work will incorporate additional data.

We fed ellipse parameters directly into the classifiers as
feature vectors. We evaluated two classifiers: k-nearest
neighbours (KNN), with k = 5, and multi layer perceptrons
(MLP), with three hidden layers having 50, 100 and 50 nodes
respectively. The KNN implementation was obtained from
the scikit-learn (Pedregosa et al., 2011) toolkit and the MLP
implementation was from Tensorflow (Abadi et al., 2016).

Results. We evaluated all classifiers with two differ-
ent training and testing approaches: 1) a within-participant,
across-BDT-item leave-one-out approach, and 2) an across-
participant leave-one-out approach. Results are summarized
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Figure 5: Sample visualizations from the same BDT item across three participants in our study.

in Table 2. While evaluating within-participant yielded bet-
ter results, testing across participants more closely matches
likely real-world applications in terms of generalizability.

Synchronization
In order to combine block placement data and gaze data, the
video feeds from both cameras were first synchronized. The
corneal imaging camera ran at about 15 frames per second,
and the overhead camera ran at 30 frames per second.

Synchronization was enabled by using clapper boards dur-
ing the study. Before each BDT item was attempted, a clapper
board was clapped two or three times over the construction
area while the participant looked on. (This was done for each
individual BDT item because the corneal imaging camera was
set up to make separate recordings for each.) Synchroniza-
tion was done by matching the frames where the clapper hits
in both video streams and dropping excess frames from the
faster overhead video feed. Figure 5 shows manual annota-
tions from the two sensor streams plotted together.

Discussion: Examples of Observations
There are many interesting observations that can be made us-
ing the outputs from our system, e.g., from the types of vi-
sualizations shown in Figure 5. (Note that because our study
recruited a fairly homogeneous sample of undergraduate CS
students, the variations we see here likely underestimate the
magnitudes and types of individual differences we would see
in a more general population.)

For example, the first and third participants complete the

design using a four-quadrant spatial pattern, while the middle
participant uses an outside-to-inside spatial pattern. About
halfway through, the top participant stops looking at the tar-
get design altogether, which suggests effective recruitment of
working memory to remember the design for the rest of the
trial; this participant is also the fastest to complete the design.

Additional questions that a researcher or clinician might
query from this kind of BDT administration include:

• Does a participant show consistency in strategy across
items, or do they switch, especially if they are having a
hard time completing items with their initial strategy?

• If a participant makes an error, how soon do they detect it?
• Does a participant look at the target design to verify and

get feedback on what they have just done? Could progress
monitoring be taught as a new strategy?

• How long does a participant spend planning before making
their first block move?

Furthermore, in addition to human-generated observations,
this approach opens the doors for using machine learning and
data mining techniques to discover new behavioral patterns
that might be significant for many types of research, includ-
ing on learning or neurodevelopmental conditions, education,
foundational psychology and cognitive science, and more.

In conclusion, we have shown feasibility of a multimodal
sensing system for measuring detailed behaviors on the block
design test (BDT), including hardware design and setup, ini-
tial results from automated measurement algorithms, and ex-
amples of “cognitively significant” observations. Future work

2550



will include removing simplifying assumptions from our task
setup, working to increase the accuracy of our automated
measurement algorithms, and investigating the use of data
mining to discover interesting behavioral patterns in data col-
lected from various populations.
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