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Abstract 
 

In reinforcement learning (RL) experiments, participants 
learn to associate stimuli with rewarding responses. RL 
models capture such learning by estimating stimulus-response 
values. But what is a response? RL algorithms can model any 
response type, whether it is a basic motor action (e.g. pressing 
a key), or a more abstract, non-motor choice (e.g. selecting 
pizza at the restaurant). Are these different responses learned 
the same way? In this study, we examine differences between 
learning a rewarding association between (1) a stimulus and a 
motor action and (2) two stimuli. We show that learning 
differs between these two conditions, contrary to the common 
implicit assumption that response type does not matter. 
Specifically, participants were slower and less accurate in 
learning to select a rewarding stimulus. Using computational 
modeling, we show that the values of motor actions interfered 
with the values of stimulus responses, resulting in more 
incorrect choices in the latter condition. 
 

Keywords: reinforcement learning; computational modeling;    
credit assignment; decision-making. 

 
Introduction 

 
The field of reinforcement learning (RL) provides a wealth of 
studies aiming to understand how individuals learn to make 
rewarding responses. Research in the field of RL has yielded 
great improvements in our understanding of the cognitive 
mechanisms that support the ability to select optimal choices, 
extending into more complex behaviors (e.g. planning: Daw 
et al., 2011; generalization: Niv et al., 2015). The RL 
framework also provides insights into developmental 
changes (Master et al., 2019) and clinical impairments 
(Gillan et al., 2016) in decision-making behavior. 

Empirical RL research relies on variations of simple 
experimental designs in which participants learn rewarding 
associations between stimuli (i.e. a picture) and responses. In 
some experiments, the response is conceptualized as a motor 
action, such as a key press (Collins & Frank, 2012; Ratcliff 
and Frank, 2012). In other studies, the response instead 
consists of participants’ selection of another visual stimulus 
(Daw et al., 2011; Foerde & Shohamy, 2014). Work on 
instrumental and classical conditioning has shown that 
selecting a motor action and approaching a goal may rely on 
different processes (Rescorla & Solomon, 1967). 
Furthermore, motor action and stimulus choice values are 

encoded differently in the brain (Luk & Wallis, 2013; 
Camille et al, 2011), and monkeys learning to select motor 
actions vs. stimuli behaved differently, and were affected 
differently by striatal lesions (Rothenhoefer et al., 2017). 
Despite this evidence that the response type is an important 
factor to consider when studying learning, human RL studies 
have not directly contrasted these types of responses. 
Consequently, conclusions from RL studies using one type of 
response (e.g. stimulus selection) are often implicitly 
assumed to generalize to the other type of response (e.g. 
motor action). Indeed, in most previous RL research, RL 
algorithms deployed to model behavior have treated these 
kinds of responses as equivalent (Daw et al., 2011; Collins, 
2018). This propagates the implicit assumption that in the RL 
framework, learning of stimulus-stimulus (also referred to as 
goal-directed learning) and stimulus-motor action 
associations are identical processes that rely on the same 
mechanisms.  

In this project, we investigate whether healthy young adults 
learn to select a response to a stimulus in the same way if the 
response is a motor action, or the selection of another (goal) 
stimulus in a reinforcement learning task. We use a novel 
experimental design and computational RL modeling to 
characterize the differences and similarities in learning. We 
provide evidence for a dissociation between two types of 
response learning, suggesting that 1) two response types are 
learned at different rates, and 2) the values of learned motor-
action responses can impact the choice of the stimulus goal. 

 
Methods 

 
Participants 
We recruited 82 participants (40 female, age mean (SD) = 
20.5(1.93), age range = 18-30) from University of California, 
Berkeley participant pool. Participants received course credit 
as compensation for participating in the study. In accordance 
with the policy of the University of California, Berkeley 
Institutional Review Board, all participants provided a 
written informed consent before beginning the experiment. 
We excluded 20 participants due to insufficient learning 
performance as participants’ average accuracy must exceed 
0.60 in all three conditions, resulting in a total sample of 62 
participants. 
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Experimental design 
We developed a new task to directly compare how 
participants use reinforcement to learn stimulus-stimulus vs. 
stimulus-action associations. At the beginning of the 
experiment, participants received detailed task instructions 
and trial examples.  Participants were told that on each trial, 
they would see one of the 6 cards from a card set (the stimuli), 
along with the 3 card boxes (responses). All boxes had 
distinct colors (red, green, blue), which we henceforth refer 
to as labels, and were placed in a left, middle, and right 
position on a line (Figure 1). The participants were asked to 
sort the cards into the boxes, based on different sorting rules. 
To sort a card, participants chose a box by pressing one of the 
three keys on the keyboard with the index, middle, and ring 
finger of their dominant hand, mapping motor actions onto 
the box positions (Figure 1). Following their response, 
participants received truthful feedback (+1 if they selected 
the correct box, 0 if they did not), before proceeding to the 
next trial. 

We divided the task into three conditions based on different 
sorting rules, and counterbalanced the order of blocks to 
minimize the effect of block order on performance. In the 
label condition, participants were instructed to sort the cards 
based on the box label only. In other words, the correct box 
for each card was consistently defined by its label (Figure 
1A), irrespective of its position on any given trial. In the 
position condition, participants were instructed to sort the 
cards only by the box position (Figure 1B). In this case, the 
correct box for each card was defined by the box position 
irrespective of its label on any given trial. In the position 
control condition (Figure 1C), the boxes were not tagged with 
labels, and participants could only sort cards by position. This 
condition allowed us to asses a baseline performance for the 
position condition, which was designed to visually match the 
label condition, with only one type of response possible.  

 

 
 
Figure 1. RL task with 3 conditions. In the first condition, 
participants learned an association between two stimuli (card 
and a label). In the two remaining conditions, participants 
learned an association between a stimulus and a motor action 
(card and a left/middle/right key press).  

 
In each block, participants had to sort 6 cards into 3 boxes. 

The stimuli (cards) were different in each block, but the three 
box labels were the same across all blocks, except in the 
control condition where boxes were not labeled. Each card 
was presented 15 times for a total of 90 trials per block. We 

controlled the order of where the labels were placed on each 
trial, such that in the position condition, each label was shown 
on the correct box an equal number of times. In the label 
condition, the correct label appeared in each position an equal 
number of times. This order was counterbalanced, with equal 
distribution of unique label position pairing across different 
stages of the task. 

On each trial, participants first saw the boxes for 1 second, 
with a fixation cross placed at the center of the screen. After 
1 second, the card for the current trial replaced the fixation 
cross, and participants were allowed to make a response. 
Participants had 1 second to make their choice, after which 
they were provided with a 1s-feedback and a 1s inter-trial-
interval before proceeding to the next trial. This trial timing 
was designed to alleviate a potential difficulty confound 
between the position and label conditions: it allowed 
participants to first identify where each box label was, as 
correct label selection was more demanding with label 
positions differing on each trial, before selecting a box in 
response to the stimuli. 

We developed the different conditions (label/position) to 
elicit different response learning processes. Specifically, in 
the position condition, participants learned an association 
between a stimulus and a correct motor action (a card and a 
left, right or middle key press). In the label condition, 
participants learned an association between two stimuli (a 
card and one of the labels). We assessed the dissociation 
between the two types of response learning by addressing the 
following questions using model-independent analyses and 
computational modeling: 

 
1) Are stimulus-action and stimulus-stimulus 

associations acquired differently, both qualitatively 
and quantitatively? 

 
2) If so, what are the computational processes that drive 

the differences? 
 

Results 
 
We first plotted participants’ learning curve (accuracy as a 
function of stimulus iteration) in all conditions. As expected, 
increased exposure to the cards and the subsequent truthful 
feedback increased participants’ accuracy of choosing correct 
boxes (Figure 2). Repeated measures one-way ANOVA 
revealed an effect of condition on overall accuracy (F(2,61) 
= 97.7, p = 4.5e-26). Next, we sought to test which of the 
individual conditions differed significantly. The control and 
position condition, which both required learning of stimulus-
motor action associations, were non-distinguishable (paired 
t-test: t(61)=1.61, p=.11), indicating that the alternating 
labels in the position condition did not impact performance. 
In contrast, participants’ performance in the label condition 
was significantly worse than in the other conditions (paired t-
test: position: t(61) = 11.1, p = 3.8e-16; control: t(61) = 12.9, 
p = 5.4e-19). 
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Next, we aimed to identify the mechanisms driving the 
decrease in accuracy in the label condition. Specifically, 
since label condition was more demanding due to labels 
changing positions on each trial, an uncompelling 
explanation for the respective drop in accuracy would 
attribute the higher frequency of errors to random slips in 
choices. This hypothesis would predict uniform, random 
error-patterns. Alternatively, we hypothesized that motor-
action values could interfere with label values, suggesting an 
incorrect credit assignment to motor actions in the label 
condition, and thus incorrectly bias the choice of the stimulus 
response. 

To test our hypothesis, we analyzed error types. We first 
computed a card-dependent reward history associated with 
each box label and each box position. Specifically, on each 
trial where participants received positive feedback, we 
incremented the cumulative reward history associated with 
the position and the label of the chosen box for the given card. 
Next, we used the label and position reward history to more 
carefully interpret choices on incorrect trials. We asked 
whether, out of the two possible incorrect choices, 

participants were more likely to make the one that had the 
highest past label reward history in the position condition, 
and the highest past position reward history in the label 
condition (henceforth referred to as interference errors). If the 
decreased performance in the label condition was due to 
noise, there should be no specific pattern in the errors. 
However, if it was due to interference, there should be more 
errors driven by position value.  

We found that the proportion of interference errors was 
significantly greater than chance (0.5) in the label-sorting 
condition (t(61) = 2.54, p = .01), but not in position-sorting 
condition (t(61) = .13, p = .89; Figure 3A). The proportion of 
interference errors in the label condition was also 
significantly greater than that in the position condition (t(61) 
= 2.69, p =.008). To further confirm that the interference 
effect was not driven by participants mistakenly transferring 
the previous block’s strategy, we ran a mixed-effects general 
linear model predicting accuracy as a function of current 
block condition and previous block condition. The results 
confirmed that accuracy was explained by current, but not 
previous block condition (p = 2.22e-14; p=0.45 respectively).

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 2. Learning curves and proportion of interference error types from participant data and simulations from the following 
models: RL, dual learning rate RL with no mixture parameter, and dual learning rate RL with mixture parameter. Baseline RL 
does not capture observed behavioral patterns. Dual learning-rate RL with no mixture parameter captures the difference in the 
learning curves, but not the interference errors. Only the dual rate model with possible deviation from correct policy captures 
both the difference in learning curves and the interference effect observed in behavioral data. 

 
Next, we utilized the card-dependent label and position 
reward history of each box to examine whether response 
times also reflect interference in the choice process. First, we 
computed a trial-by-trial cumulative card-dependent reward 
history associated with positions and labels separately 
(Figure 3). Next, on each trial, we calculated the card-
depended reward history difference (RHD) for both labels 
and positions. The RHD represented the difference between 
the reward history of the chosen box, and reward history sum 
of the non-chosen boxes. The RHD scaled with accuracy in 
the relevant condition. For instance, in the position condition, 
the correct box position was rewarded more frequently if 

participants were more accurate in the past. In contrast, 
incorrect box positions were never rewarded. Consequently, 
this led to a greater discrepancy between the cumulative 
reward history of the correct box position, and the cumulative 
reward history of the incorrect box positions. Given that 
participants’ responses got faster with more learning, we 
hypothesized that greater RHD would predict faster response 
times only in correct dimension (i.e. the label RHD in label 
condition, and position RHD in position condition). On the 
other hand, we predicted the incorrect dimension (e.g. the 
label RHD in position block and vice versa) would have no 
effect on response times, unless there was an interference 
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effect. We performed a linear mixed effects model analysis, 
predicting log-transformed RTs on correct trials using 
position and label RHD. We controlled for the trial number, 
to ensure that the changes in the RTs were not simply driven 
by the practice effects or related factors associated with trial 
advancement.  

Our results showed that participants’ shorter RTs in the 
position and label conditions were indeed associated with 
higher respective RHD (label: β = -.04, p = 5.1e-19; position: 
β = -.06, p = 3.6e-21). The label RHD had no effect on RTs 
in the position condition (β= -.004, p = 0.55), supporting the  
conclusion that there was no interference of label values with 
the position choice. On the other hand, we found the opposite 
effect of position RHD in the label condition (β = .034, p = 
.001). Furthermore, subject level estimates of the incorrect 
factor RHD were significantly greater in label relative to 
position condition. (paired t-test: t(61) = 3.87, p = 2.6e-04). 
In other words, participant responses in label condition 
blocks were longer when position RHD was high (Figure 
3B). This result complemented the error-type results, 
revealing an interference of motor-action values with 
learning of stimulus-stimulus associations. The asymmetry of 
the interference effect further implied that acquisition of 
stimulus-stimulus and stimulus-motor action associations in 
pursuit of rewards are not equivalent. 
 

 
 
Figure 3. A) Example of the interference error trial in label 
condition. Participants track the values of both labels and 
conditions in parallel. On trials where evidence is 
accumulated in favor of a position not matching the location 
of the correct label, participants are more likely to select the 
response matching the box with high position value when 
incorrect. B) On correct trials participants tend to be slower 
when position and label values compete, which argues 
against the speed-accuracy tradeoff. This interference effect 
of incorrect dimension (the motor action) is specific to the 
label condition. 

Model 
 

Both error-type and RT analyses suggested that learning 
stimulus-motor action associations interferes with learning 
stimulus-stimulus associations: Participants did not fully 
segregate choice strategies across relevant conditions. We 
next sought to support these analyses with computational 
modeling in an effort to pinpoint the mechanisms of the 
interference effect. Was mixing of choice strategies essential 
for capturing data properties beyond the accuracy difference 
(i.e. exact patterns of errors)? Furthermore, did other 
mechanisms (i.e. the rate of learning or forgetting) differ 
between the 2 conditions, driving observed performance 
differences? 

To answer these questions, we developed a reinforcement 
learning (RL) model of learning behavior in this task. Our 
model assumes that (1) both values of positions and labels are 
learned and updated individually, and (2) there is a mixture 
of choice strategies, such that each choice may reflect a 
contribution of both the position and the label value, allowing 
for potential interference when only one value is relevant 
(Figure 3). 

The family of RL models we considered extended a classic 
model-free RL (Sutton and Barto, 1998; Schultz, Dayan & 
Montague, 1997) with two main parameters: learning rate and 
softmax inverse temperature. We integrated additional 
processes to parameterize different aspects of behavior that 
basic RL alone does not capture. 

Our model assumed feedback-dependent value-learning in 
both conditions, in that for each card c the expected reward 
of the correct labels QL(c,l) and positions QP(c,p) was 
incrementally updated based on the outcome of each trial. 
The reward history for both the label and the position of the 
selected box was updated as a function of prediction error 
between expected and the observed outcome at trial t: 

 
QP t+1(c,p) = QPt(c,p) + α x δP 
QL t+1 (c,l) = QLt(c,l) + α x δL 

 
where δ was the dimension-specific reward prediction error, 
formalized as δt = rt – Q(c,response), and α was the learning 
rate. Although value updating was identical for labels and 
positions, we assumed separate reward prediction errors for 
label and position.  

Choices of position/label with greater Q-values were 
selected with a greater likelihood, as a function of softmax 
choice policy: 

𝑃(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛|𝑐) = !"#	(&∗(
!(),#+,-.-+/))

1"!"#	(&∗(!(),#))
 

 
𝑃(label|𝑐) = !"#	(&∗(

#(),234!2))
1$!"#	(&∗(#(),2))

 
 

where β was the inverse temperature, which controlled the 
stochasticity in the choice policy, based on the differences 
between the values of each response. Importantly, we 
assumed that the final policy was a mixture of two choice 
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strategies: (1) choosing the box with the highest position and 
(2) highest label value at the policy level, such that: 

 
P(position|c, pos. block) = ρP*p(position) + (1- ρP)*p(label) 

P(label|c, lab. block) = ρL*p(label) + (1- ρL)*p(position) 
 
In both conditions, higher values of the ρ parameter 

indicated that the choices were influenced by the value of the 
relevant dimension (i.e. values of labels in label condition and 
values of positions in position condition). ρ < 1 indicated 
deviation from the correct policy, and an influence of the 
incorrect value dimension (i.e. position values in label 
condition). The policy in the control blocks was identical to 
the one in position blocks.  

In addition to the stochasticity of the choice which the 
softmax allowed, the undirected noise parameter e allowed 
the model to capture value-independent random slips in 
choices (Nassar & Frank, 2016). We defined a new policy by 
incorporating the undirected noise into the choice process: 

 
P’ = (1-ε)*p + ε* 5

67
 

 
where nC was the number of choices, 5

67
 was the uniform 

random policy, and ε was the noise parameter (0< ε <1). 
Higher value of ε indicated higher likelihood of random 
lapses. We also implemented forgetting by allowing the Q-
values of positions and labels to decay on each trial: 

 
QPt+1 = QPt + d*(QP0-QPt), 
QLt+1 = QLt + d*(QL0-QLt), 

 
Where d (0<d<1) was the decay parameter. Higher d values 
indicated faster forgetting. 

Prior work in similar tasks (Collins, 2018; Christakou et 
al., 2013) has shown that individuals tend to learn less from 
negative than positive feedback. To capture individuals’ 
propensity to neglect negative feedback, we also integrated a 
learning bias parameter, such that for negative prediction 
errors, the learning rate is reduced to α *(learning bias).  

 

 
Figure 4. Model schematic. The model assumes different 
learning and value updating for labels and positions. The box 
choice is assumed to be determined by a mixture of position 
and label values. 
 
 

We used the Matlab optimization function fmincon (the 
Mathworks Inc., Natick, Massachusetts, USA) to fit 
parameters with 20 randomly chosen starting points to reduce 
the likelihood of finding a local rather than global minimum. 
We fit our models to each participant’s data individually 
using maximum likelihood estimation method. We fit all the 
parameters, except β and ρP, with a lower bound = 0 and 
upper bound =1. Following previous work (Collins, 2018; 
Master et. al, 2019), we observed that fixing β =100 improved 
parameter recovery and estimation. Note that leaving β free 
or condition-dependent did not improve the model fit. 
Following behavioral results that showed 1) no performance 
difference between control and position conditions, and 2) no 
interference of label value in position conditions (Figure 2), 
we also fixed ρP to 1. We confirmed with model comparison 
that leaving ρP a free parameter did not improve model fit (see 
Modeling results). 
 
Model comparison 
We repeated the fitting and the simulation procedure for the 
models listed in the Table 1. We aimed to test whether 
placing different constraints, such as allowing only one or no 
distinct parameters for label and position learning, would 
enable us to capture the behavior better. We compared the 
tested models using the Akaike Information Criterion (AIC) 
which penalizes model complexity. For each of the models of 
interest we simulated data, then fit all of the models to the 
simulated data. We were able to recover the ground truth 
(simulating model) via model comparison with AIC (Figure 
5), confirming that AIC is appropriate for model comparison 
in this context (Wilson & Collins, 2019). 
  

Modes Learning 
rate(α) 

Decay(d) Noise(ε) Mixture 
(ρ) 

M1 1 1 1 1(ρL) 
M2 1 1 2 1(ρL) 
M3 2 1 1 0 
M4 2 1 1 1(ρL) 

Table 1. List of the model variations we compared. For each 
column, the values of 1 and 2 indicate whether we used a 
single parameter for both label and position learning, or two 
distinct parameters respectively. * ρL = mixture parameter 
which weighs the value of labels; 2 learning rates = distinct 
learning rates for learning position and label values. 
 
Specific models 
We first verified that including undirected noise, forgetting, 
and learning bias improved our ability to capture behavior 
relative to 2-parameter RL. Next, we verified that including 
a free ρL parameter improved the fit, while leaving b and rF 
free did not. Thus, our baseline model M1 included 5 free 
parameters (α , ρL, ε, d, learning bias). This baseline model 
treats the different conditions as identical by utilizing the 
same set of parameters for all conditions, except for the label-
condition-specific ρL parameter.  
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We compared this baseline model to a family of models 
that allowed for more graded differentiation between the 
response learning processes in the two conditions (control 
condition was treated as identical to position condition). 
Systematically varying the structure and complexity of the 
compared models allowed us to identify the best fitting 
model, and in doing so isolate the cognitive mechanisms that 
most likely drive differences in stimulus-stimulus vs. 
stimulus-action learning. In particular, we tested the models 
with different combinations of condition-dependent learning 
rate, decay, learning bias and undirected noise. Here, we 
focus solely on a few models that enabled us to test specific 
theoretical predictions regarding the difference in choice 
processes in stimulus-stimulus and stimulus-action 
associations (Table 1). Specifically, dual noise RL model M2 
tests whether the observed condition dissociation in learning 
can be explained by stimulus-value learning being a 
noisier/more difficult process. Dual learning rate RL with 
fixed mixture parameter ρL=1 M3 tests whether the empirical 
dissociation can be captured solely by different learning rates. 
Last, model M4 (dual learning rate RL with free mixture 
parameter ρL) tests whether a mixture policy is necessary to 
capture the full behavioral pattern, including error types. 
Other models did not sufficiently account for and fit the data, 
thus we omitted them from further discussion.  
 
Model validation 
To validate the models’ fit to the data (Palminteri et al., 2017, 
Wilson & Collins, 2020), we tested whether they captured 
key qualitative features of behavior with high fidelity. 
Specifically, for each participant, we simulated the models 
using individually fit parameters 100 times and averaged the 
simulations’ performance to capture the model’s predicted 
behavior for that participant (Figure 2). 

 
Modeling results 

 
The AIC comparison revealed that the model with two 
learning rates, single decay and noise parameters and a free  
ρL mixture parameter (M4, Table 1) had the best fit relative 
to other models (Figure 5A). Model simulations revealed that 
this model captured the critical features of the participants’ 
behavior (Figure 2). Specifically, simulated accuracy of M4 
in the label condition was lower than simulated accuracy in 
the position and control conditions. Simulations captured 
both the lower accuracy in the early learning stages (averaged 
over first several stimulus iterations) as well as the 
asymptotic accuracy (accuracy over later stimulus iterations). 
By contrast, a classic RL model could not capture observed 
behavior (Figure 2). 

The validation and model comparison results, therefore, 
supported the conclusion that the dissociation between 
stimulus-stimulus and stimulus-motor action association 
learning was primarily driven by the difference in learning 
rates, rather than decay or the rate of random slips in actions. 

To test the necessity of the mixture policy in label blocks 
to capture condition effects in behavior, we fit the dual 

learning rate model without the mixture parameter (M3, 
Table 1). We found that this model fails to produce the 
observed interference errors, suggesting that the mixture 
parameter is essential to capture the contribution of different 
values to the choice process (Figure 2). Finally, to quantify 
the asymmetry in the interference effect, we fit an addition 
model that included the same parameters as the winning 
model (dual learning rate and mixture parameter) with an 
additional free ρP parameter. This model did not improve the 
fit, confirming that a fixed ρP =1, ρL <1 captured the data well.  

 We next sought to assess the differences in condition-
dependent parameters. In the winning model M4, condition 
comparison revealed that the learning rate in the position 
condition was significantly greater than the learning rate in 
the label condition (sign test p = 7e-10; Figure 5c). 

The computational modeling approach allowed us to 
decouple the mechanisms contributing to learning correct 
stimulus, and correct motor-action responses. The basic RL 
model with a single set of parameters for both types of 
response learning failed to capture the data in both 
conditions, thus suggesting different learning processes for 
stimulus-stimulus and stimulus-motor action associations. 
Since the model comparison favored the model with (1) dual 
learning rates and (2) different policy mixture parameters, we 
concluded that the underlying learning mechanisms of 
stimulus-stimulus and stimulus-motor action associations are 
not equivalent, as commonly assumed. Furthermore, given 
that this model provided the best fit, we reasoned that while 
different decay, learning bias, and undirected noise 
parameters could contribute to capturing the behavioral 
features, they were not essential for explaining the 
differences between these conditions. Thus, combining 
model-independent error-type and RT analyses with 
modeling allowed us to confirm that behavioral differences 
in the two conditions cannot be explained by a discrepancy in 
condition difficulty and performance noise. 

 
 

Discussion 
 
We combined a novel experimental design and 
computational modeling approach to test the equivalence of 
stimulus-stimulus and stimulus-motor action associations in 
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the RL framework. Consistent with previous work on 
instrumental learning, we presented results that challenge the 
homogeneity of response definition in RL. Specifically, we 
showed that learning processes with different learning rates 
underlie stimulus and motor action response-learning. This 
contradicts the implicit assumption that all response types are 
equivalent, inviting for caution in future reinforcement 
learning studies and modeling practice.  

Our current design prohibits us from testing whether the 
stimulus-stimulus associations are always more ‘suboptimal’ 
and susceptible to interference (i.e. from other, less correct 
stimulus responses) relative to stimulus-motor action 
associations. Future work is also required to disambiguate 
mechanisms of interference – for instance, whether the 
interference effect is driven solely at the policy level, or also 
incorrect stimulus and motor-action value updates. In 
addition, while we attempted to dissociate between stimulus 
and motor responses, we cannot rule out the possibility that 
the position sorting condition represents another form of 
stimulus response (e.g. based on spatial position).  

Our results showed that participants track the value of 
motor actions even when they are irrelevant (in the label 
condition), and that irrelevant action values influence their 
choices. This was revealed by the interference errors, where 
the value of the irrelevant position dimension influenced 
which error was made, and was captured by a mixture 
parameter in the RL model. This pattern in errors also ruled 
out the possibility that condition effects were due to a 
difficulty confound, an explanation also ruled out by the 
worse fit of a model including multiple noise parameters. 
Thus, our results suggest that the dissociable strategies based 
on  different sets of values compete during the choice process. 
This highlights the possibility of parallel RL circuits in the 
brain contributing jointly to decision-making, and the 
importance of clearly defining response types in RL studies.  
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