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Abstract 
The face-inversion effect, or the drastic decrease in accuracy 

seen when a participant is asked to identify inverted faces when 
compared to upright faces, is an effect that is not found in object 
inversion. Here we suggest a new explanation of this effect using 
computational models to show that the phenomenon can be 
explained by the anatomical mapping from the visual field to 
primary visual cortex. We propose that the way inverted faces are 
mapped onto the cortex is fundamentally different from the way 
upright faces are mapped. Our work first shows the advantages of 
this mapping due to its scale and rotation invariance when used as 
input to a convolutional neural network. We train the network to 
perform recognition tasks and show it exhibits scale and 
realistically constrained rotation invariance. We then confirm that 
the decline in accuracy seen when a participant is asked to identify 
inverted faces is not seen in the network with inverted object 
recognition tasks. With the support of these two findings, we test 
the face-inversion effect on our network and are able to show the 
unique decline in accuracy, suggesting that the way the visual field 
is mapped onto the primary visual cortex is a key facet in the 
manifestation of this effect. 

 

Keywords: Face-inversion effect; object inversion; scale 
invariance; rotation invariance; log polar transformation. 

Introduction 
A well known, well defined, but still poorly understood 
phenomenon in perception is the face-inversion effect. Early 
experiments showed the difficulty people have both with 
identifying and remembering upside down faces. The effect 
is even more pronounced when compared with people’s 
abilities to do these same tasks with objects (Yin, 1969). In 
subsequent years, many studies have explored the questions 
that still remain about our cognitive abilities in facial 
recognition. Some of these studies have focused on creating 

cognitive hypotheses or new models to understand the 
processing that occurs in the brain (Rakover, 2013; 
Schwaninger et al., 2003). Others have focused on the 
cognitive processes that occur and the way they manifest 
differently when the stimulus is an inverted face 
(Schwaninger & Mast, 2005; Rezlescu et al., 2017; Rock, 
1988). Still others have explored the time course of the 
differences when processing right side up faces versus 
upside down faces during recognition (Taubert et al., 2011; 
Freire et al., 2000). We propose an additional method for 
approaching these questions by studying the anatomical 
basis for the way faces in the visual field are mapped onto 
primary visual cortex. 

Previous work studying the face-inversion effect using an 
anatomical approach has provided evidence for the link 
between inverted face processing and different cortical 
areas. Much of the work focuses on cortical regions such as 
the fusiform face area (FFA) and the occipital face area 
(OFA), and how they respond differently to upright and 
inverted faces (Pitcher et al., 2011; Yovel and Kawisher, 
2005; Kanwisher et al., 1998). This occurs late in processing 
and in specialized brain regions. Our work instead uses an 
anatomical approach to study the inversion of a face as it is 
perceived at the level of the primary visual cortex (V1). We 
are interested in the way faces, both upright and inverted, 
are mapped onto V1 and how that mapping plays a role in 
the face-inversion effect. 

The mapping of the visual field onto the visual cortex 
(V1, V2, and V3) can be approximately described by 
geometric transformations of the visual field (J.R. Polimeni 
et al., 2006). Polimeni describes a “Wedge-Dipole model” 
of this mapping, which has two component parts: 1) “a 
(quasiconformal) wedge mapping with” 2) “a (conformal) 
dipole mapping.” Together these two transformations map  
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Figure 1. Scale is a horizontal translation. 
 

 
 

Figure 2. Rotation is a vertical translation 
 
the visual field onto a 2D representation of cortical space. In 
this map, a wedge map is a compression of the image in the 
visual field along the azimuth, and the conformal dipole 
mapping “is an extension of the standard log-polar or 
complex logarithm mapping” (J.R. Polimeni et al., 2006). 

For our model, we have chosen to simplify Polimeni’s 
model map to the visual cortex in two ways. The first is in 
the visual cortex itself. Instead of mapping to V1, V2, and 
V3, we are only concerned with primary visual cortex (V1). 
Our focus is on studying the mapping from the visual field 
onto the visual cortex as a possible factor in the explanation 
of the face-inversion effect. Because of this, we do not 
model the mapping of the visual field onto higher visual 
areas, nor did we model anatomically where the stimuli are  

 
 

Figure 3. The map to V1 starts at the vertical meridian and 
proceeds clockwise from there. 

 
processed later in the temporal lobe. The second 
simplification we made was with respect to the 100:1 image 
compression from retina to V1 (100M photoreceptors 
compared to 1M synapses onto the LGN). We chose to only 
use log polar transformations on our images as a 
simplification. We believe this is a valid approximation, and 
not an oversimplification, because the compression of the 
visual field is consistent across the visual field. Even if the 
size of the final mapping differs, the proportions of the 
visual field mapped into the cortex are maintained for 
different areas of the visual field.  

By using a log polar transformation on the images, we are 
still able to capture important features of the mapping. 
Because of the log transformation of the radial axis, the 
pixels at the center of the image are more highly represented 
than those in the periphery. This mirrors the greater 
representation of the fovea on the cortical surface when 
compared with the periphery. In the primate visual system, 
this “cortical magnification” is due to the number and 
arrangement of receptors in the retina: densely packed in the 
fovea, and dropping off logarithmically in the radial 
direction. Another simplification is that we did not use the 
anatomical constraint that only half of the visual field is 
represented in each hemisphere. 

Our work includes two components. We first wanted to 
test how well a log polar mapping could perform a 
recognition task with faces at multiple scales. This provides  
insight into how well the anatomically inspired mapping 
will work in tandem with the convolutional neural network 
(CNN) that we use for our recognition tasks. Hence, images 
are preprocessed by the log polar transformation before 
being input to the network. We chose scale as the 
transformation to test first to verify that the combination of 
the log-polar input with a translation-invariant convnet 
would be scale invariant, as has been verified independently 
in an unpublished paper (Remmelzwaal et al., 2019). We 
tested the network’s ability to generalize to new scales 
through interpolation, or generalizing to a scale not seen in 
testing that lies between scales seen in testing, and 
extrapolation, generalizing to scales not seen in testing and 
that do not lie between scales seen in testing. These 
experiments allowed us to verify that our mapping allowed 
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CNNs to become invariant to scaled images, and validated 
our use of them with rotated images.  

The second aspect of the work was to test the network’s 
ability to generalize to rotated images. To parallel our scaled 
experiments, we tested the ability of the network to 
generalize to new rotational orientations through 
interpolation and extrapolation. This verified that the 
network, with images mapped with log polar 
transformations, could not only become invariant to scale, 
but also to rotation. We then tested the network on upside 
down faces to explore the face-inversion effect with log 
polar images.  

Note that there is a topological difference between scale 
and rotation. Whereas scale is just a horizontal shift, rotation 
requires wrap-around due to the fact that 360° is the same as 
0°. Indeed, due to the vertical meridian in the retina, the top 
of the V1 representation corresponds to 270° and the bottom 
to 90° (see Figure 3). This results in a configuration of the 
input that has the features in a different relationship to one 
another (see Figure 2, bottom row). Now the eyes are above 
the nose and mouth, versus in upright position, the log-polar 
representation has the eyes below the mouth. We believe 
that this configural difference is what contributes to the 
inverted face effect. 

Methods 
Model 
For each of our experiments, we used ResNet-18 to perform 
the identification tasks. This network has an initial 
convolutional layer followed by four blocks with four 
convolutional layers in each, and makes use of global 
average pooling before the final, fully connected layer (He 
et al., 2016). 

Data 
We used images of faces for training and testing. All 

images of faces were previously collected by members of 
the lab as part of a new face dataset. The dataset includes 
200 different people, each with approximately 200 unique 
images. These images portray each person in a variety of 
contexts, with differing backgrounds, lighting conditions, 
orientations, and facial expressions. The training set 
including 30,030 total images, or approximately 150 images 
per person. The test set includes 3,236 total images, or 
approximately 16 images per person (Figure 4). 

We also used a dataset of cars, The Comprehensive Cars 
(CompCars) Dataset (Yang et al., 2015), for our 
experiments with object inversion, as the inversion effect for 
objects is much smaller than it is for faces (Yin, 1969). The 
dataset includes cars of different makes, models, and years. 
In addition, the cars in each image are oriented differently. 
We used 16,200 images in our training set and 1,800 images 
in our test set. The images were evenly distributed across 
nine categories. We chose to use the labels of car types, 
such as “Sedan” or “Pickup”, for the categories in our object 

inversion task, as these can be thought of as non-trivial basic 
level categories (Figure 5).  

Transformations  
We preprocessed our images to create an anatomically-
realistic mapping of the visual field onto V1. The visual 
field is mapped into polar coordinates in V1. In addition, 
there is a log transformation that accounts for more 
receptors and greater representation in cortical regions for 
central vision as compared to peripheral vision (Polimeni, 
2006). We used a log polar transformation on our images as 
a 2D approximation of this mapping onto the cortex. 

We conducted experiments studying scale and rotation in 
facial recognition to verify the effects discussed above. For 
scale, we used unscaled images (224 x 224), images that 
were scaled to 80% of the original image size (180 x 180), 
and images that were scaled to 60% of the original image 
size (134 x 134). For each of the two different scaled 
conditions, we padded the images back to the original image 
size of 224 x 224. For each scale of image, we first found a 
bounding box around the face in the image and then took the 
log polar transformation from the center of the box. This 
allowed us to take the log polar transformation from a point 
that represented the fixation point on the face. After the 
images have undergone a log polar transformation, changes 
in scale appear as translation changes in shifts left and right 
(Figure 1).  

In the rotation experiment, we rotated the training images 
to commonly observed head orientations: 20°, 10°, 0°, -10°, 
and -20°. To study the face inversion effect, we also rotated 
testing images to 180° for testing (not included in training). 
For each case of rotation, we first found a bounding box 
around the face and then took the log polar transformation 
from the center of the face, similarly to the scaled images. 
After the images have undergone a log polar transformation,  
 

 
 

Figure 4. Images from face dataset 
 

 
 

Figure 5. Images from The Comprehensive Cars Dataset 
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the changes in degrees of rotation appear as changes in 
translation in shifts up and down. However, in contrast to 
the shifts that occur when scaled images undergo a log polar 
transformation, when an image shifts up or down the pixels 
that “fall off” the edge of the image wrap around to the 
opposite side of the image. Instead of appearing as a simple 
translation, changes in rotation in images that have 
undergone a log polar transformation result in a rearranging 
of features, particularly the eyes and the mouth.  

Experiments and Results 
To test the validity of using log polar images as an 
approximation for the mapping from the visual field to 
primary visual cortex, we tested the network’s scale 
invariance on log polar images. Convolutional neural 
networks are invariant to shift, and when an image has 
undergone a log polar transformation, changes in scale 
appear as changes in translation. Therefore, the network 
should be invariant to scale. We tested scale invariance 
under two different conditions: interpolation and 
extrapolation. 
We trained with our preprocessed images for 90 epochs. We 
then tested with two different conditions. Both test 
conditions used images that depicted the same 200 people 
seen in training, but were all novel images. The testing 
images had different backgrounds, lighting, and poses than 
the training images. The first test condition used the novel 
images with the same preprocessing and transformations 
used in training. This is the accuracy for familiar 
orientations, which we call the “training condition.” The 
second test condition used the same novel images as were 
used in the first test condition, but with novel 
transformations performed. This we call the “testing 
condition.” If these two accuracies are similar, then 
invariance to the transformation performed in the second 
test condition is shown. For all experiments, the difference 
between the training condition and the testing condition is 
the primary result being reported. 

Scaling 
We first trained a network on only one scale and then tried 
to generalize to different scales. These experiments resulted 
in large differences between the training and testing 
conditions; accuracy was much lower for the test condition. 
We then tried training using two scales, and tested using 
extrapolation to larger and smaller scales. This treatment 
resulted in similar accuracies between train and test 
conditions. The results are shown in Table 1. 
 

Table 1. Scale: training condition/testing condition 
 

 Trained with one 
scale 

Trained with 
two scales 

Generalizing to 
larger images 81.3% / 68.6% 89.1% / 88.8% 

Generalizing to 
smaller images 80.8% / 64.2% 89.5% / 87.2% 

Interpolation Interpolation in scale invariance is the ability 
of the network to generalize to unseen scales when it has 
been trained on a combination of scales that are larger and 
scales that are smaller than the testing scale. We trained a 
network using unscaled images and images that were scaled 
to 60% of the original image size. We then tested the 
network on the facial recognition task with images that were 
scaled to 80% of the original size. Table 2 shows the results 
of this experiment. By the end of training, the training 
condition accuracy reached 87.8% and the testing condition 
accuracy reached 87.5%. This is only a 0.3% difference in 
training condition accuracy and testing condition accuracy. 

Extrapolation We then explored extrapolation in scale 
invariance. In order for a network to show scale invariance 
in extrapolation it would have to be able to generalize to 
testing scales that were either larger than all scales seen in 
training or smaller than all scales seen in training. We first 
trained a network on larger images to test the ability to 
generalize to smaller images. The training and testing 
conditions were then flipped to see if a network trained on 
smaller images was able to generalize to larger images. 

To test the ability to generalize to smaller images, we 
trained a network on unscaled images and images that had 
been scaled to 80% of the original image size. We then 
tested the network on images that were scaled to 60% of the 
original image size. The results of this experiment are found 
in Table 2. We found the training condition accuracy with 
these conditions to be 89.5% and the testing condition 
accuracy to be 87.2%. This gives us a difference of 2.3% 
between the two accuracies. 

For the experiment to generalize to larger images, we 
trained a network on images that were scaled to 80% of the 
original image size and images that were scaled to 60% of 
the original image size. We then tested on unscaled images. 
From Table 2, the training condition accuracy at the end of 
training was 89.1% and the testing condition accuracy was 
88.8%, which gave a final difference of 0.3%. 

Rotation 
We then explored how effective using log polar 
transformations on images to map the visual field to V1 is 
when the transformation being performed is rotation instead 
of scaling. Once images have undergone a log polar 
transformation, changes in rotation appear as a translation of 
the image up or down. However, when the log polar image 
shifts, the pixels wrap around to the other side of the image. 
We wanted to determine the effect of this wrapping first 
with more realistic changes in head orientation, and then 
with inverted faces. Because of our results from scaling 
experiments in which multiple examples of orientations in 
training proved more robust to transformation, we 
performed all rotation experiments using multiple 
orientations in training. Similarly to the scaling 
experiments, we looked at both interpolation and 
extrapolation conditions when testing the realistic changes 
in head orientation.  
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Interpolation Interpolation in rotation experiments is the 
ability of the network to generalize to an unseen head 
orientation when it has been trained on head orientations to 
the right and to the left of the testing orientation. To test 
interpolation in rotation, we trained a network on faces 
rotated 10° and faces rotated -10°. We then tested the 
network on faces that were not rotated. The results are in 
Table 3. The network achieved a training condition accuracy 
of 87.2% and a testing condition accuracy of 84.9%, which 
gives a difference in accuracy of 2.3%. 

Extrapolation Extrapolation in our rotation experiment is 
how well the network can generalize to unseen head 
orientations that do not lie between head orientations seen in 
training. Because we are using multiple training orientations 
and rotation is cyclic, any testing orientation can be 
considered to be between the training head orientations. For 
the purpose of our experiments, extrapolation means using a 
testing head orientation that is directly adjacent to all 
training head orientations, either clockwise or 
counterclockwise. 

To test rotation invariance with extrapolation we tested 
both clockwise and counterclockwise rotation.  For 
clockwise extrapolation, we trained the network on faces 
rotated 10°, faces rotated 0°, and faces rotated -10°. We then 
tested the network on faces rotated -20°. The training 
condition accuracy at the end of training was 89.5% and the 
testing condition accuracy was 86.9%. The difference in 
accuracies for clockwise rotation was 2.6%. For 
counterclockwise extrapolation we used the same training 
examples as were used in clockwise extrapolation. The only 
difference was that we tested on faces that were rotated 20°. 
For the counterclockwise experiment we achieved a training 
condition accuracy of 89.9% and a testing condition 
accuracy of 87.9%. The total difference in accuracy was 
2.0%. The results of these two experiments can be seen in 
Table 3. 

Rotation of Objects As a means of validating that inversion 
affects the perception of faces in a different way than it 
affects the perception of objects, we tested our network on 
inverted cars. We trained for 50 epochs on images of cars in 
nine categories. The cars were rotated to five orientations 
for training: 20°, 10°, 0°, -10°, and -20°. We then tested 
with two different testing conditions. The first testing 
condition, or the training condition, tested novel images of 
the cars at orientations seen in training. The second testing 
condition, or the testing condition, tested novel images of 
cars that were rotated 180°. This allowed us to demonstrate 
the effect of object inversion on the network when used in 
combination with log polar images. These results are shown 
in Table 4. For cars, the training condition accuracy at the 
end of training was 50.7% and the testing condition 
accuracy at the end of training was 19.4% for a total 
difference in accuracies of 31.3%. This demonstrates that 
rotated images have a significant effect on the network’s 
performance.  

The Face-Inversion Effect 
Our main focus in studying rotation under these conditions 
was to test the face-inversion effect on our network knowing 
that taking a log polar mapping of our images provided an 
approximation to the mapping from the visual field to V1 
that allowed our network to be invariant to scale. To test this 
effect, we trained on normally oriented faces and tested on 
upside down faces. We used our conclusion from the scaling 
experiments that networks are more robust to 
transformations in recognition tasks when they are trained 
on more examples of transformations to inform our face-
inversion effect experiment. Because of this, we chose to 
train our network on five degrees of rotation: 20°, 10°, 0°, -
10°, and -20°. While this provides a training range of only 
40°, the degrees of rotation are frequently seen orientations 
of the head and face. This also allowed for direct 
comparison with the object inversion experiment. We then 
tested using the same two testing conditions used in the 
experiment with rotation of objects. The first testing 
condition was the training condition, in which we tested the 
network on novel faces at the same orientations used in 
training. The second testing condition was the testing 
condition, in which we tested on only the one orientation, 
faces rotated 180°. The results of this experiment are shown 
in Table 4. Our training condition accuracy after training for 
50 epochs was 90.6%. Our testing condition accuracy was 
20.4%. The difference in our training condition accuracy 
and testing condition accuracy when testing the face-
inversion effect was 70.2%. This difference is significantly 
higher than any other difference seen in our experiments, 
including the experiment on the inversion of objects. While 
together the experiments showed that inversion is a much 
more difficult task for the network, they also show that the 
network behaves differently when the stimuli are faces.  
 

Table 2. Scaling: training condition/testing condition 
 

Interpolation 87.8% / 87.5% 
Extrapolation to smaller scales 89.5% / 87.2% 
Extrapolation to larger scales 89.1% / 88.8% 

 
Table 3. Rotation: training condition/testing condition 

 
Interpolation 87.2% / 84.9% 

Extrapolation to clockwise rotation 89.5% / 86.9% 
Extrapolation to counterclockwise 

rotation 89.9% / 87.9% 

 
Table 4. Face-inversion effect and object inversion 
experiments: training condition/testing condition 

 
Face-inversion effect 90.6% / 20.4% 

Object inversion 50.7% / 19.4% 
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Discussion 
We used an anatomically-inspired log polar transformation 
to preprocess the input images to our network as a parallel 
to the mapping that occurs from the visual field onto the 
primary visual cortex. This transformation accounts for a 
number of aspects of the visual system. The log 
transformation gives greater representation in the final input 
images to the pixels in the region at the center of the 
transformation. This is analogous to the center of fixation on 
an image. This greater representation of central pixels 
mirrors the cortical magnification of central vision as 
compared to peripheral vision, which occurs because of the 
increased number of receptors for central vision. This 
transformation also allows the network to be invariant to the 
scale of faces, which is an important component in face and 
object recognition. After a log polar transform, changes in 
scale appear as changes in horizontal translation. CNNs are 
invariant to translation, which allows them to be invariant to 
scaling performed on these preprocessed images. The log 
polar transformation is unique in being able to facilitate the 
replication of aspects of biological vision. 

Through our experiments with scaled faces, we were able 
to show that, with log polar images, scale invariance in a 
CNN can be achieved. This can be shown for interpolation 
and extrapolation, provided the network is trained on 
multiple scales. We believe this validates the use of the log 
polar transformation as a 2D approximation of the mapping 
of the visual field onto V1. 

The success of introducing scale invariance to the 
network led us to perform experiments with rotated images. 
Because of the difference in behavior of log polar images 
that are rotated as compared to scaled, we wanted to again 
verify the validity of using log polar transformations as 2D 
approximations of the mapping of the visual field onto V1. 
We used multiple head orientations in training to increase 
the robustness of the network to unseen orientations. In both 
interpolation and extrapolation of head orientations, the 
network was able to generalize to unseen head orientations. 
This supports the conclusions from the scaled experiments 
that log polar transformations provide a valid approximation 
for the mapping of the visual field onto V1, because the 
network was also able to demonstrate rotation invariance to 
commonly observed head orientations in addition to scale 
invariance. 

With these results, we proceeded to test the face-inversion 
effect in our network. Even when training on multiple head 
orientations meant to increase robustness to unseen 
orientations, the difference between the training condition 
accuracy and the testing condition accuracy was 
significantly larger than any other difference seen in all 
experiments. The network was not invariant to a rotation of 
180°. Instead of a simple transformation, a rotation of 180° 
appears as a fundamental rearrangement of the features as 
they are mapped onto the cortex. It is this rearrangement 
that we believe plays a part in the face-inversion effect. 
 As a final validation that the network was 
demonstrating this behavior uniquely for faces, we trained 

the network on multiple orientations of cars and then tested 
it on inverted cars. The network was able to generalize to 
inverted objects better than it was able to generalize to 
inverted faces, strengthening the argument that the effect of 
the log polar mapping onto V1 causing a decline in 
recognition accuracy is unique to faces. 

We believe that these results are explained by the log 
polar transformation that was performed on the images. 
When using log polar transformations, changes in rotation 
cause the rearrangement of features. The more severe the 
rotation, the bigger the impact this on a network’s ability to 
recognize the inverted image. In essence, the inversion of 
images causes a fundamental rearrangement of features 
when in conjunction with a log polar transform. When 
features are rearranged, the configural information about the 
relationship of features of the object or face in the image is 
lost. It is the loss of this configural information that causes 
both cars and faces to have larger drops in accuracy between 
the training condition and the testing condition. However, 
we believe this accuracy drop is more significant in facial 
recognition because of the importance of configural 
information in recognizing faces. The network is showing 
that it is relying more heavily on configural information 
when it is performing facial recognition as opposed to object 
recognition. The effect of the loss of this information is 
reflected in the magnitude of the accuracy drop between 
training and testing conditions. 

In addition, we do not believe that these conclusions are 
in conflict with popular hypotheses. Some studies have 
suggested that a holistic approach to face perception, or the 
emphasis of the face as a whole as opposed to the face being 
viewed as a combination of features, lies at the center of the 
face-inversion effect because of the way that rotation affects 
the configuration of features and the mechanisms the brain 
employs to  “undo” this rotation (Shwaninger, 2003; 
Schwaninger, 2005; Farah et al., 1995). Our work similarly 
suggests that there is a fundamental rearrangement of 
features, and that upright faces are not mapped on to the 
cortex in the same configuration as inverted faces. We 
believe that these experiments suggest a compelling 
anatomical basis for the face-inversion effect. 
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