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Abstract

In this study we investigate how lexical-semantic relations as-
sociated with the literal meaning (and abstract meaning) are
being accessed across the brain during familiar metaphor com-
prehension. We utilize a data-driven whole-brain searchlight
similarity-decoding analysis. We contrast decoding metaphoric
phrases (”she’s grasping the idea”) using distributional seman-
tic models of the verb in the phrase (VERB model) versus that
of the more abstract verb-sense (PARAPHRASE VERB model)
obtained from literal paraphrases of the metaphoric phrases
(”she’s understanding the idea”). We showed successful decod-
ing with the VERB model across frontal, temporal and parietal
lobes mainly within areas of the language and default-mode
networks. In contrast, decoding with the PARAPHRASE VERB
model was restricted to frontal-temporal lobes within areas of
the language-network which overlapped to some extent with
significant decoding with the VERB model. Overall, the re-
sults suggest that lexical-semantic relations closely associated
with the abstract meaning in metaphor processing are largely
localized to language and amodal (multimodal) semantic mem-
ory systems of the brain, while those more associated with
the literal meaning are processed across a distributed seman-
tic network including areas implicated in mental imagery and
social-cognition.
Keywords: metaphor; abstraction; distributional semantics

Introduction
Metaphor comprehension involves a mapping from one do-
main of experience onto another and draws on inferential
processes in order to derive the speaker’s intended meaning.
This could involve linking language-based semantic interpreta-
tion with memory images or sensorimotor simulations (Lakoff
& Johnson, 1980). Nevertheless, how semantic information
is selectively accessed and processed during metaphor com-
prehension remains to be fully elucidated. Specifically, how
lexical-semantic relations associated with the literal meaning
(and abstract meaning) are accessed across the brain during
metaphor comprehension is not well understood. In this pa-
per we leverage distributional semantic information (or co-
occurrence patterns) of verbs to map how lexical-semantic
relations associated with both literal and metaphoric uses of
verbs correlate with activity across the brain during the pro-
cessing of metaphoric actions (e.g. “She’s grasping the idea”).

Distributional semantics defines the meaning of words and
phrases as a function of the linguistic contexts in which they
are used in large text corpora (Turney & Pantel, 2010). The
resulting vector-based representations have been successfully
applied in a number of complex language-based tasks (e.g.,
language translation and inference) and, recently, they have

been leveraged to further understand semantic representation
and processing in the brain. For instance, a number of studies
show that distributional semantic models can decode (and pre-
dict) neural activity associated with the processing of words
(Mitchell et al., 2008), sentences (Pereira et al., 2018), but also
larger narrative texts (Huth, de Heer, Griffiths, Theunissen, &
Gallant, 2016). However, it is still far from clear how these
models achieve semantic composition nor how distributional
semantics can inform our understanding of neural processes
associated with the building of sentence meaning from indi-
vidual words and phrases, a central feature of language.

Metaphor comprehension may prove to be a powerful test
case for bridging distributional semantic models of language
understanding with neurocognitive work on semantic process-
ing in the brain. Metaphor typically involves the construal of a
more abstract concept in terms of a concrete one, (e.g., “She’s
pushing the agenda”), however, the accessibility and process-
ing of the literal meaning during metaphor comprehension is
debated. In the indirect view (Grice, 1975; Searle, 1979), the
metaphoric meaning is accessed indirectly by first processing
the literal meaning (or “context-free” meaning). In contrast,
proponents of the direct view (Gibbs, 1994; Glucksberg &
Keysar, 1990) argue that the metaphoric meaning may be im-
mediately available and the literal meaning largely by-passed.

Still, others propose views somewhere in-between direct
and indirect views in which factors such saliency (Giora, 1997)
or familiarity (Gentner & Bowdle, 2005) may dictate the ex-
tent that the literal meaning is processed initially or in-parallel
to the abstract meaning. For example, novel metaphors may
involve the direct comparison of elements in the source and tar-
get domains such that structural alignment of higher-order rela-
tions between domains can be discovered (Gentner & Clement,
1988). However, as metaphors become familiar through re-
peated usage they can be processed directly as categorizations
as their meanings become increasingly lexicalized.

Taking an embodied perspective, conceptual metaphor the-
ory finds that metaphor processing may depend on pre-stored
conceptual mappings that are learned throughout the course of
experience (Lakoff & Johnson, 1980). In this view concrete
meanings play a direct role in structuring the more abstract
concepts. However, the extent to which language users need
to access more grounded representations is debated. Taken
together, the extent to which aspects of the literal meaning
(lexical-semantic or more embodied representations) are ac-
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Object Sentence
The scientific idea She’s grasping the idea
The biology concept He’s grasping the concept
The poem’s meaning She’s grasping the meaning
The math topic He’s grasping the topic

Figure 1: Sample stimuli for the verb grasp

cessed and processed across the brain during the construction
of the metaphoric meaning remains largely underspecified.

In this study, we investigate how distributional information
associated with literal compared to the more abstract meaning
can be mapped across the brain during metaphor comprehen-
sion. Specifically, we look at decoding metaphoric uses of
verbs (“She’s grasping the idea”) in the brain using distribu-
tional semantic models of the verb (“grasp”) and also that of
the more abstract meaning (“understand”) obtained from the
literal paraphrases of the metaphoric phrases (“She’s under-
standing the idea”). To do this, we use a data-driven whole-
brain searchlight similarity-decoding analysis. We assume
that lexical-semantic relations associated with the more ab-
stract verb obtained from the literal paraphrase of the metaphor
should closely overlap with the relations associated with the ab-
stract meaning of the metaphorically used verbs. We find that
the abstract meaning in metaphor processing is largely local-
ized to the language-network and areas implicated in amodal
(multimodal) semantic memory, while the literal meaning is
processed across a more distributed semantic network includ-
ing within the default-mode network implicated in mental
imagery, episodic memory retrieval, and social cognition.

Materials
fMRI data
We re-analyzed the data collected from the fMRI experiment of
(Djokic, Wehling, & Aziz-Zadeh, in press), who investigated
force-dynamics of metaphoric uses of hand-action verbs in
the brain. Below we provide an overview of the relevant
information for our specific study.

Participants 10 right-handed, native English speakers (age
range 18-25, 4 females and 6 males) with no history or neuro-
logical illness and normal vision participated in the study.

Stimuli Stimuli consisted of 120 metaphoric sentences. A
total of 30 unique hand-action verbs were used to create all
sentences each repeated four times. All sentences were in the
3rd person singular, present tense, progressive, see Figure 1.
Stimuli were normed for length and familiarity.

Experimental Paradigm The fMRI task was divided into
4 runs each lasting 8.5 minutes. Participants saw a total of
120 metaphoric sentences and 8 catch trials. During each run
participants saw 30 metaphoric sentences and 2 catch trials.
Sentences containing the same verb were presented once in
each run. The object of the sentence was presented on the
screen for 1.8 seconds followed by an inter-trial interval of 0.2
seconds and then the sentence was presented for 6 seconds

followed by a rest period of 8 seconds in an event-related
design. During each rest period participants simply fixated a
cross on a gray screen. All the stimuli were presented on a
computer screen using Matlab 1. Stimulus presentation was
randomized across subjects.

fMRI data acquisition A Siemens MAGNETOM Trio 3T
System was used to acquire fMRI images using a 32-channel
head matrix coil. The T1-weighted structural anatomical scans
(MPRAGE) were obtained using a T1-weighted magnetiza-
tion prepared rapid gradient echo protocol with TR=1950 ms,
TE=2.26 ms, flip angle of 10 degrees, 208 coronal slices, and
resolution of 1mm with 256 x 256 mm matrix. The functional
images (37 contiguous axial slices) were obtained using a T2*
weighted single-shot gradient-recalled echo-planar sequence
(EPI) using blood oxygenation-level-dependent contrast in
interleaved mode with TR=2000 ms, TE=30 ms, flip angle 90
degrees and 3.5 mm resolution with 64 x 64 mm matrix.

Semantic models
For all of our linguistic models we used the GloVe word em-
beddings (Pennington, Socher, & Manning, 2014). We use
the 100-dimensional word vectors, which were trained by the
authors of the study on Wikipedia and the Gigaword corpus.

VERB In the VERB model the stimulus phrases are repre-
sented as the individual D-dimensional word embeddings for
their verb.

PARAPHRASE VERB In the PARAPHRASE VERB model
the stimulus phrases are represented as the individual D-
dimensional word embeddings for the verb obtained from
their literal paraphrase.

Literal paraphrases of the metaphor were created by the
authors of this study and normed for familiarity by an indepen-
dent set of participants in a separate behavioral experiment.

Methods
fMRI data preprocessing and response estimation
All preprocessing and statistical analysis were carried out
using FSL and PyMVPA 2. All runs were concatenated to
form the language dataset for each subject. Functional data
were co-registered with the MPRAGE structural image of
each subject. Preprocessing included slice timing correction,
high-pass filtering (90 secs), and motion correction to the mean
image using FSL’s MCFLIRT. Following this, each dataset was
linearly detrended. The response-amplitude (Beta values) were
estimated using the General Linear Model (GLM) for each
individual stimulus presentation in an event-related design.
This gave voxel-wise Beta maps for each stimulus presentation
that were then normalized to z-scores. We calculated neural
verb estimates by averaging the voxel-wise z-score maps of all
sentences containing the same verb. This gave thirty unique
neural verb estimates. We used these neural verb estimates to

1Psychophysics toolbox 3, www.psychtoolbox.org
2PyMVPA 0.6, http://www.pymvpa.org/
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perform similarity-decoding across the whole-brain using the
VERB and PARAPHRASE VERB models, separately.

Similarity-decoding
We used similarity-decoding (Anderson, Zinszer, & Raizada,
2016), an extension of representational similarity analysis
(RSA) (Kriegeskorte, Marieke, & Peter, 2008). We perform
similarity-decoding separately for the VERB model and the
PARAPHRASE VERB model. As in RSA, similarity-decoding
involves comparing neural and model similarity matrices (Pear-
son’s correlation is used as a distance metric). Neural similar-
ity matrices are created by calculating all pairwise similarities
using neural estimates of each verb, while the model similarity
matrices are created by calculating all pairwise similarities
using the word embedding vectors of each verb (either from
the VERB model or PARAPHRASE VERB model). Neural and
model similarity-matrices are then compared by performing
leave-two-out decoding allowing the classification of individ-
ual terms. Specifically, a single pair of verbs is selected at a
time out of the total number of possible verb pair combinations
(k = 30 verbs is 435). Each verb is represented as a vector
of its pairwise similarities with all other verbs (similarities
with the pairs themselves are removed to not bias decoding).
Neural and model similarity verb vectors are thus extracted
from the respective columns of the neural and model similarity
matrices. The neural and model similarity vectors of the pair
of verbs are then correlated using the correct labeling assign-
ment, but also the incorrect labeling assignment. If the sum of
correlation coefficients with the correct labeling is higher than
with the incorrect label assignment, this is counted as a cor-
rect classification and incorrect otherwise. The final decoding
accuracy is calculated as the number of correct classifications
over the total number of possible pairs.

Whole-brain searchlight analysis We performed
similarity-decoding using a searchlight analysis across
the brain. Specifically, this involves placing a sphere with a 4
voxel radius (a cluster of 257 voxels) centered on each voxel
of the brain in each subject’s native space and performing
similarity-decoding within this region of interest. This gives a
classification accuracy score for each voxel across the brain.

Statistical Significance Statistical evaluation was per-
formed using non-parametric cluster-thresholding of
searchlight-based group analysis (Stelzer, Chen, & Turner,
2013) using PyMVPA. This involves performing within-
subject permutations by shuffling class labels in order to
obtain 100 random accuracy maps per subject. A bootstrap
procedure is then used to calculate 10000 random group-
average accuracy maps. The 10000 thresholded group-average
accuracy maps (uncorrected voxel threshold of p < 0.001)
give a null distribution of chance cluster sizes. Statistically
significant searchlight-based group results are reported at an
uncorrected cluster forming threshold of p < 0.001 and a
family-wise error rate for multiple comparison correction of
cluster size probabilities p < 0.05 using FDR correction.

Results
VERB model:
We performed a whole-brain similarity-decoding searchlight
analysis to localize areas of the brain that can significantly
decode metaphoric uses of verbs using the VERB model, see
Table 1 and Figure 2.

In the left hemisphere significant clusters were found across
frontal, parietal, and temporal lobes. We found three frontal
clusters. The first frontal cluster was found in the left dorsal
medial prefrontal cortex with peak decoding accuracy in the
left frontal pole extending to the superior frontal gyrus (SFG)
and paracingulate cortex. A second frontal cluster was found
in left ventral medial prefrontal cortex, with peak decoding ac-
curacy localized to the left lateral orbital frontal cortex (OFC)
extending to the frontal pole and temporal pole. The third
frontal cluster showed a peak decoding accuracy in the left
precentral gyrus extending to middle frontal gyrus (MFG) and
inferior frontal gyrus (IFG), pars opercularis.

Two clusters were found in the left parietal lobe. This
included a cluster with a peak decoding accuracy localized to
the left medial superior parietal lobule (SPL), mainly the left
precuneus extending to the posterior cingulate cortex (PCC).
A second parietal cluster was localized to areas of the left
inferior parietal lobule (IPL), mainly the left angular gyrus
(AG) extending to the posterior supramarginal gyrus (SMG)
and superior lateral occipital cortex (LOC). Lastly, a small
cluster was also found in the left posterior superior temporal
gyrus (STG) within the left temporal lobe.

In the right hemisphere of the brain we found significant
decoding in frontal and temporal lobes. This included a large
cluster within right dorsolateral prefrontal cortex (DLPFC)
with a peak decoding accuracy localized to the right frontal
pole extending to the MFG and IFG, pars triangularis. A
smaller cluster was also found in more midline regions with a
peak decoding accuracy localized to the right supplementary
motor cortex (SMA) extending to the anterior cingulate cortex
(ACC). Lastly, a small cluster was also found in the right
anterior temporal lobe with peak decoding accuracy localized
to the right temporal fusiform cortex and extending to the
anterior parahippocampal gyrus and temporal pole.

PARAPHRASE VERB model:
We performed a whole-brain similarity-decoding searchlight
analysis to localize areas of the brain that can significantly de-
code metaphoric uses of verbs using the PARAPHRASE VERB
model, see Table 2 and Figure 2.

In the left hemisphere significant clusters were found across
the frontal and temporal lobes. We found two frontal clusters.
The first frontal cluster had peak decoding accuracy localized
to the left IFG, pars opercularis extending to frontal/central
operculum cortex, anterior insula, but also slightly to the IFG,
pars triangularis. The second left frontal cluster was localized
to the left MFG extending to the IFG, pars opercularis and
slightly to the precentral gyrus. In the left temporal lobe a sin-
gle cluster was found with peak decoding accuracy localized
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to the left posterior middle temporal gyrus (MTG) extending
to the posterior STG.

Lastly, in the right hemisphere significant clusters were
found across the frontal and temporal lobes. In the right tem-
poral lobe the largest cluster was found in the right anterior
temporal lobe with a peak decoding accuracy within the the
right anterior temporal fusiform cortex extending to the right
posterior temporal fusiform cortex, anterior inferior temporal
gyrus (ITG), anterior MTG, anterior parahippocampal gyrus,
temporal pole, and also to areas of the ventromedial prefrontal
cortex (VMPFC), mainly the medial OFC. In the right frontal
lobe a smaller cluster was also found in ventrolateral pre-
frontal cortex (VLPFC) with peak decoding accuracy in the
right frontal pole extending to the lateral OFC.

Overlap between VERB model and PARAPHRASE
VERB model
We found brain regions showing significant clusters when de-
coding with both the VERB and PARAPHRASE VERB models
across the whole brain, see Figure 2. Overlapping significant
clusters were found in the left frontal lobe and right temporal
lobe. Specifically, in the left frontal lobe we found overlap-
ping clusters mainly in the left IFG, pars opercularis, but also
to some extent in areas of left MFG, left precentral gyrus,
frontal/central operculum, and anterior insula. In the right tem-
poral lobe we found overlapping clusters in the right anterior
temporal lobe mainly in the right temporal fusiform cortex
and parahippocampal gyrus, but also extending slightly to the
temporal pole.

Discussion
We used a whole-brain similarity-decoding searchlight anal-
ysis to investigate how lexical-semantic relations associated
with the literal meaning (and abstract meaning) correlate with
brain activity across the brain during familiar metaphor com-
prehension. In order to identify areas of the brain sensitive to
lexical-semantic relations associated with action-verbs used
in a literal versus metaphoric context we contrasted decod-
ing metaphoric phrases using word embeddings of the VERB
versus that of the abstract verb-sense or PARAPHRASE VERB
obtained from literal paraphrases of the metaphoric phrases.

The results showed successful decoding with the VERB
model predominantly across brain regions in the language
and default-mode networks. In contrast, we found successful
decoding with the PARAPHRASE VERB model largely across
brain regions in the language-network. Xu, Lin, Han, He, and
Bi (2016) provide evidence that the semantic system is com-
prised of at least three modules that work in concert during
semantic processing, mainly (1) a perisylvian language net-
work (PSN) associated with lexical-semantic processing, (2)
default-mode network (DMN) implicated in memory-based
simulation, (3) a frontal-parietal network (FPN) involved in
semantic control. In this context, the results suggest that
the abstract meaning in metaphor processing is largely local-
ized to language and amodal (multimodal) semantic memory
systems of the brain, while the literal meaning is processed

across a more distributed semantic network including areas
implicated in memory-based simulation or the re-enactment of
conceptual knowledge drawing on mental imagery, episodic
memory retrieval, and aspects of social cognition (Xu et al.,
2016). Importantly, our results align with neuroscientific work
showing that abstract concept processing depends to a larger
extent on language-related brain regions (Hoffman, Binney, &
Lambon Ralph, 2015), while concrete compared to abstract
concepts show greater activation in the DMN (Binder, West-
bury, Possing, McKiernan, & Medler, 2005).

When decoding with the VERB model we found significant
clusters spanning left-lateralized classical language areas, in-
cluding in areas of the left IFG (Broca’s area), left MFG, left
SFG, left posterior STG (Wernicke’s area), and to some ex-
tent the left temporal pole. Recent work using more sensitive
individual subject analysis (Fedorenko, Behra, & Kanwisher,
2011), additionally implicate the full extent of the left tempo-
ral lobe, the left lateral OFC and the left AG in language-based
compared to non-language based tasks of similar cognitive
effort (Fedorenko et al., 2011). To this extent, it is likely that
the significant clusters we found in the left lateral OFC and
left AG when decoding with the VERB model also reflect
higher-level language processing.

Critically, Xu et al. (2016) suggest that the left AG actually
may act as an integration hub linking information across the
PSN, DMN, and the FPN during semantic processing, but with
the left posterior AG more closely associated with the DMN.
This aligns with recent work suggesting that the language and
default-mode networks occur side by side as part of parallel
distributed association networks that work together to accom-
plish higher-order cognition (Braga, DiNicola, & Buckner,
2019).

We found significant clusters within a number of brain re-
gions typically associated with the DMN when decoding with
VERB model. The DMN shows decreased activity during
goal-oriented tasks and increased activity during the resting-
state, and typically includes the bilateral AG, PCC, VMPFC,
and DMPFC (Binder & Desai, 2011). However, Xu et al.
(2016) also include areas of the superior LOC and areas of
the fusiform and parahippocampal gyrus. We found a signifi-
cant cluster with peak decoding accuracy in the left angular
gyrus, extending posteriorly to the left superior LOC. We
also found clusters in other areas of the DMN including the
precuneus and PCC, VMPFC, and DMPFC. While areas of
the left anterior AG, VMPFC and DMPFC have also been
implicated in higher-level language processing (Fedorenko
et al., 2011; Xu et al., 2016), the significant clusters in the
left posterior AG, precuneus and PCC likely are more specific
to memory-based simulation. The DMN has been associated
with memory-based simulation relevant to a range of tasks
including visual-spatial navigation, recall of autobiographical
memories, as well as mentalizing (Xu et al., 2016).

When decoding with the VERB model we also found a clus-
ter with peak decoding accuracy localized to areas of the left
precentral gyrus. However, this was very close to the poste-
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Anatomical Brain Region Voxels Coordinate (x,y,z) Accuracy p-value

L Frontal Pole 2144 -24 50 32 0.601 2.0×10−7

R Frontal Pole 1513 30 42 36 0.605 3.9×10−7

L Precentral Gyrus 1368 -44 2 34 0.600 5.9×10−7

L Precuneus 396 -8 -38 46 0.587 7.8×10−7

L Frontal Orbital Cortex/Frontal Pole 289 -36 38 -14 0.587 9.8×10−7

L Angular Gyrus 270 -56 -54 26 0.585 1.2×10−6

R Supplementary Motor Cortex 231 6 -12 48 0.576 1.4×10−6

R Temporal Fusiform Cortex, anterior 203 34 0 -34 0.573 1.6×10−6

L Superior Temporal Gyrus, posterior 68 -64 -34 16 0.575 1.8×10−6

Table 1: Results of similarity-decoding searchlight with the VERB model. MNI coordinates and significance levels shown for the
peak voxel in each cluster.

Anatomical Brain Region Voxels Coordinate (x,y,z) Accuracy p-value

R Temporal Fusiform Cortex, anterior 2271 34 2 -38 0.600 2.0×10−7

L Inferior Frontal Gyrus, pars opercularis 527 -58 14 10 0.583 3.9×10−7

L Middle Frontal Gyrus 445 -48 18 36 0.595 5.9×10−7

R Frontal Pole 267 38 44 -16 0.594 7.8×10−7

L Middle Temporal Gyrus, posterior 115 -66 -34 -8 0.577 9.8×10−7

Table 2: Results of similarity-decoding searchlight with the PARAPHRASE VERB model. MNI coordinates and significance
levels shown for the peak voxel in each cluster.

Figure 2: Significant decoding of metaphoric uses of lexical-verbs across the brain with the VERB model [red] and PARAPHRASE
VERB model [blue]. Regions of overlap are show in purple. Results presented at (p < 0.001) uncorrected, (p < 0.05) FWE
corrected cluster threshold.
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rior areas of the left MFG suggesting that this cluster likely
reflects language processing. Still, this cluster did extend to
areas of the ventral premotor cortex that have also been impli-
cated in motor imagery and action-related verb and sentence
processing (Pulvermuller, 2005). Prior neuroscientific work
suggests that processing of action-verbs (and sentences con-
taining action-verbs) recruits both primary motor and premotor
areas (Pulvermuller, 2005). Future work will need to more
fully understand how lexical-semantic relations associated
with the VERB model correlate with motor areas during the
processing of literal versus metaphoric uses of action-verbs.

Lastly, we also found significant clusters when decoding
with the VERB model in areas of the right anterior temporal
lobe. Xu et al. (2016) suggest that the left anterior temporal
lobe serves as the seat of amodal (multimodal) semantic mem-
ory and acts as a connector hub integrating information be-
tween the FPN and DMN. Given recent work showing that the
bilateral anterior temporal lobes are implicated in the storage
of amodal (and multimodal) semantic memory (Rice, Caswell,
Moore, Hoffman, & Lambon Ralph, 2018), it is possible that
the right anterior temporal lobe plays a similar function during
metaphor comprehension. Critically, we also found significant
clusters in the right DLPFC (also SMA and ACC) implicated
in working memory and conflict monitoring, which will need
to be further investigated in future work.

In contrast to the more distributed semantic network we ob-
served for the VERB model, lexical-semantic relations associ-
ated with the PARAPHRASE VERB model correlated predomi-
nantly with left-lateralized frontal temporal regions associated
with the classical language network. We found significant
clusters across areas of the left IFG, left MFG, left SFG, left
posterior MTG, and left STG. Interestingly, Xu et al. (2016)
suggest that the left posterior MTG may link the PSN and
FPN, possibly suggesting that the abstract meaning relies to a
greater extent on the FPN, but this will also need to be further
investigated. Importantly, we also found a significant cluster
localized to areas of the right anterior temporal lobe that has
been implicated in amodal (multimodal) conceptual knowl-
edge storage. The results suggest that the abstract meaning in
metaphor processing is largely relegated to areas of the brain
involved in higher-level language processing.

Overlapping areas of significant decoding between the
VERB model and PARAPHRASE VERB model occurred mainly
within classical language-related areas and brain regions impli-
cated in amodal (multimodal) conceptual knowledge storage.
Specifically, overlap was found for clusters with peak decod-
ing accuracies localized to the left IFG and the right anterior
temporal lobe within the anterior temporal fusiform cortex and
parahippocampal gyrus. Taken together, the results suggest
that lexical-semantic relations more closely associated with
the abstract meaning in metaphor processing are largely local-
ized to language and amodal (multimodal) semantic memory
systems of the brain, while those more associated with the
literal meaning are processed across a more distributed se-
mantic network including areas implicated in mental imagery

and social-cognition. This suggests that aspects of the literal
meaning are being processed, possibly those most relevant to
social-emotional experience.

Critically, there are important limitations to the current
study. We assume that the semantic neighborhood of the ab-
stract verb-sense captured by the VERB PARAPHRASE model
should be more closely associated with that of the abstract
meaning (or metaphoric meaning) than the literal meaning.
However, the VERB PARAPHRASE model likely only repre-
sents a subset of the lexical-semantic relations relevant to the
abstract or metaphoric meaning. In the direct view, the nomi-
nal metaphor “my lawyer is a shark” is understood directly via
the creation of an abstract superordinate category “predatory
creatures” of which the vehicle “shark” is a prototypical mem-
ber (Glucksberg & Keysar, 1990). Importantly, this ad-hoc
category is not truly lexicalized (i.e., there is no linguistic
phrase that captures its full semantic content) and, therefore,
it may be argued that the abstract verb-sense from the literal
paraphrase provides only a rough approximation to this ad-hoc
category. The metaphoric meaning may best be captured as
a conceptual blend between the source and target. Kintsch
(2000) provide a computational model in line with the catego-
rization view in which they model the metaphoric meaning as
a conceptual blend of the source and target by focusing on the
words at the intersection of their semantic neighborhoods. To
this extent, future work will need to experiment with different
compositional semantic models of metaphor that more explic-
itly model the interaction between the source and target and
test these against word-level vectors.

In this study we sought to understand how distributional in-
formation associated with literal compared to the more abstract
meaning can be mapped across the brain during metaphor
comprehension. We found evidence to suggest that lexical-
semantic relations more closely associated with the abstract
meaning in metaphor processing are largely localized to lan-
guage and amodal (multimodal) semantic memory systems of
the brain, while those more associated with the literal mean-
ing are processed across a more distributed semantic network
including areas implicated in mental imagery and social cog-
nition. Future work will need to more carefully model what
aspects of the literal meaning are necessary to metaphor com-
pared to literal sentence processing and how that information
is being selected for and processed in the brain. Ultimately,
understanding what features of the literal meaning are being
filtered and how (either via inhibition or some other mecha-
nism) during metaphor comprehension will allow us to discern
the relative contribution of the literal meaning in the construc-
tion of the metaphoric meaning. Testing distinct processing
models of metaphor in the brain that specify the interaction of
source and target across time may further help adjudicate be-
tween different putative temporal stages involved in metaphor
processing, such as processing of the literal meaning at an
early stage (Weiland, Bambini, & Schumacher, 2014) or via
a parallel processing route (Cartson, 2010). Finally, it has
been suggested that a comprehensive theory of metaphor may
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include combining processes associated with categorization
(conceptual blending) with those involved in analogical rea-
soning such as structure mapping (Holyoak & Stamenkovic,
2018). Indeed, metaphor comprehension depends on the abil-
ity of language users to go beyond the literal meaning of the
words given and this may draw on pragmatic inferencing or the
ability to integrate lexical-semantics with context and world
knowledge (Weiland et al., 2014). The present results point to
the need to further understand the way the language-network
may flexibly interact with the memory-based simulation sys-
tem to accomplish this during metaphor comprehension.
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