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Abstract

In visual word processing modeling, few models have success-
fully accounted for a large variety of tasks, and large corpora of
behavioral observations. We consider a dataset from a megas-
tudy, in which participants performed three tasks (lexical de-
cision, word naming, and word recognition in a progressive
demasking situation), on the same, large set of stimuli. We
define the BRAID-Phon model, an extension of a previous
probabilistic model, the BRAID model, whose originality is
its visuo-attentional component, in which a visuo-attentional
distribution spatially deploys sensory processing capabilities.
BRAID-Phon includes phonological representations of words,
allowing simulating the naming task. We simulated the three
tasks on the dataset we considered, and analyzed predicted re-
action times in terms of word frequency and word length ef-
fects. Simulation results show that BRAID-Phon successfully
captures the direction and order of magnitude of the observed
effects, in all three tasks.

Keywords: Visual word processing; computational modeling;
reading aloud; lexical decision; megastudy simulation

Introduction
Different experimental paradigms can be used to study vi-
sual word processing through the analysis of participants’ re-
sponse times (RTs). The lexical decision (LD) and word nam-
ing (NMG) paradigms are the most popular. In LD, partici-
pants have to decide whether an input letter-string is a known
word or not; RTs correspond to time needed to press a YES
or NO response key. In naming, participants have to read
the word aloud and identification RTs are collected with a
microphone. Another very useful but less frequently used vi-
sual word processing paradigm is the progressive-demasking
(PDM) task. In this task, a word is progressively revealed and
participants press the key as soon as they think they have iden-
tified it. Response accuracy is checked after their response,
by asking them to spell the word they have identified.

Using these different paradigms, a considerable amount of
data has been accumulated that led to identifying the most
relevant psycholinguistic factors that influence the reader’s
performance. When the same set of words was used in the
different tasks, allowing cross-task comparisons, results re-
vealed that response times were highly inter-correlated, sug-
gesting that the different tasks involve shared cognitive pro-
cesses (Carreiras, Perea, & Grainger, 1997). However, the
current literature lacks an integrated model of visual word
processing, able to account for the variety of observations
across different cognitive tasks (Norris, 2013).

In the last decade, the megastudy approach has become in-
creasingly popular. Megastudies provide experimental data
for thousands of items, over tens or hundreds of participants.
Even if concerns have been raised about the relative stability
and reliability of the collected datasets (Sibley, Kello, & Sei-
denberg, 2009), such megastudies minimize bias risks from
working with short lists of stimuli and help to reduce in-
consistencies in the word recognition literature (Balota, Yap,
Hutchison, & Cortese, 2012). However, most of these large
data sets were collected on a single task, mainly LD; only
some data were collected in both LD and NMG, and to the
best of our knowledge, a single megastudy (the Chronolex
database) provides data for the same large set of words in
the three tasks of LD, NMG and PDM (Ferrand et al., 2011).
Thus, the Chronolex dataset is particularly appropriate to ex-
plore the word processing effects that are common to the dif-
ferent tasks and how these effects are modulated depending
on task demands.

Different classes of computational models have been de-
veloped that implement different aspects of the reading pro-
cess. Word recognition models focus on the visual processes
involved in letter identification and how perceptual informa-
tion contacts orthographic knowledge during processing (see
Norris (2013), for a review). They are mainly used to simu-
late the behavioral effects reported in lexical decision. Mod-
els of naming more specifically question how a spoken form
of the word is generated from the printed letter string (Ans,
Carbonnel, & Valdois, 1998; Coltheart, Rastle, Perry, Lang-
don, & Ziegler, 2001; Perry, Ziegler, & Zorzi, 2007, 2010).
They are typically used to account for RTs in reading aloud.
Naming models can further account for LD and provide a
reasonable fit to human data on this task. However, most of
these models make simplifying assumptions about the visual
word recognition mechanisms and/or letter position encod-
ing, which limits their explanatory power. Moreover, only
a few computational models have been confronted to large-
scale datasets, and when they were, simulations were limited
to a single task (Norris & Kinoshita, 2012; Perry, Ziegler, &
Zorzi, 2014; Sibley, Kello, & Seidenberg, 2010). The avail-
ability of cross-task megastudies (Balota et al., 2007; Ferrand
et al., 2011) opens new perspectives, allowing to check the
models’ ability to account for robust effects reported in dif-
ferent experimental paradigms.

The originality of the current study is twofold. First, our
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purpose is to develop a new computational model of the read-
ing process that includes both a fully specified word recog-
nition component and a phonological component, thus being
able to simulate relevant behavioral effects from a variety of
tasks. Second, we ask how well the model can account for
cross-task large-scale datasets, focusing on the two main ef-
fects of word frequency and word length which are known as
the best predictors of RTs in LD, NMG and PDM (Balota,
Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Ferrand et
al., 2011).

For this purpose, we start from the BRAID model
(“Bayesian word Recognition with Attention, Interference
and Dynamics”, Phénix (2018)) and extend it by adding a
phonological component. BRAID is the first word recog-
nition model that implements a variety of visual processes
known to affect letter-string processing, namely an acuity
gradient, lateral interference between adjacent letters and vi-
sual attention deployment. The model was previously shown
to account for classical effects in letter perception, word
recognition and lexical decision, such as frequency effects,
word superiority effects, neighborhood effects, transposed-
letter priming effects or the optimal viewing position ef-
fect (Phénix, 2018; Phénix, Valdois, & Diard, 2018; Phénix,
Ginestet, Valdois, & Diard, submitted). Further, BRAID was
successful at simulating length effects in LD as reported in
the French Lexical Project megastudy (Ginestet, Phénix, Di-
ard, & Valdois, 2019).

In the next section, we describe how BRAID was extended
into “BRAID-Phon”, a “BRAID with phonology” model, to
develop the first model of reading aloud that incorporates
a fully specified word recognition sub-model. Second, we
show how BRAID-Phon simulates the LD, NMG and PDM
tasks, with a self-imposed constraint to simulate all three
tasks using the same default values of the parameters. We
also describe the original dataset from the Chronolex megas-
tudy (Ferrand et al., 2011). Finally, we analyse and discuss
experimental results from our simulations, by focusing on the
frequency and length effects, that, in the Chronolex data, af-
fect human RTs in the same direction in all three tasks but
with different magnitudes.

Model
BRAID
BRAID is a computational model of the visual processes and
knowledge involved in letter recognition, word recognition
and lexical decision. Probabilistic variables and probabil-
ity distributions model representations and knowledge, and
probabilistic inference provides mathematical expressions for
simulated tasks. The BRAID model features the three clas-
sical levels of visual processing, as in the seminal IA model
(McClelland & Rumelhart, 1981): the letter sensory level,
the letter perceptual level and the lexical level (see Fig 1).
The main originality of BRAID is the inclusion of a visual
attention layer, between the sensory layer and the letter per-
ception layer. Here, we only provide a rapid description of

Figure 1: Graphical representation of the BRAID and
BRAID-Phon models. Each submodel is represented by a
colored, labelled rectangle. Variables are represented by
nodes and arrows refer to probabilistic dependencies. The
full structure is the one of the BRAID-Phon model; removing
the “phonology” portion of the lexical submodel yields the
structure of the initial BRAID model.

each submodel; the full mathematical description is available
elsewhere (Phénix, 2018).

The sensory submodel of BRAID implements low-level vi-
sual processing, taking into account effects from an acuity
gradient, from lateral interference between letters of the stim-
ulus, and from visual similarity between letters. St

n variables
describe the stimulus at each time step t and each position
n, Gt represent the gaze position at time step t. Letter pro-
cessing is parallel and results in probability distributions over
variables It

n, that represent internal letter representation.
The visual-attention submodel spatially modulates the

transfer of information propagation during sensory process-
ing, from the sensory to the perceptual submodels, to favor
processing of the attended portion of the stimulus, to the detri-
ment of the rest. In other words, it can be construed as a spa-
tial filter of information across letter positions. The distribu-
tion of attention is represented by a probability distribution,
assumed to be Normal over spatial positions, so that it is de-
scribed by its location µt

A and dispersion σt
A.

The letter perceptual submodel is a dynamic model that
implements accumulation of perceptual evidence. Probabil-
ity distributions over variables Pt

n evolve over time as they re-
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ceive information from sensory processing, allowing to iden-
tify letters at each position n and each time step t.

The lexical knowledge submodel represents knowledge
about the orthography of known words, with a naı̈ve Bayes
model predicting, for each word W , its letter Lt

n at each po-
sition. In the present study, the lexical submodel is config-
ured with the Lexique 3.82 database, featuring the spelling
of 92,117 French words (New, 2006). The lexical submodel
also includes a dynamical model, to accumulate perceptual
evidence about which known word corresponds to the stim-
ulus, if one does. The initial state of this dynamical model
is the prior distribution P(W 0), which is identified to word
frequency from the reference lexicon.

The final submodel, the lexical membership submodel, al-
lows evaluating the correspondence between the stimulus and
known words, using a dynamically evolving probability dis-
tribution over Boolean variable Dt . In other words, this sub-
model implements an “error model”: assuming the input
string is a word (Dt = True), perceived letters should match
those of a known word in all positions; on the contrary, if the
input is not a word (Dt = False), matching should fail in at
least one position.

In the overall architecture of the BRAID model, informa-
tion propagates at each time step both in a bottom-up manner
(from the sensory to the perceptual to both the lexical knowl-
edge and lexical membership submodels) and in a top-down
manner (from the lexical submodels to the perceptual sub-
model). Therefore, lexical top-down information influences
processing at the letter level, yielding word and pseudo-word
superiority effects, as in classical models. Further, this influ-
ence is modulated by lexical membership: if the stimulus is
probably not a word, top-down influence is decreased so that
only perceptual, bottom-up information contributes to letter
identification probabilities.

BRAID-Phon
In order to extend the BRAID word recognition model into
the BRAID-Phon reading aloud model, we add a phonologi-
cal sub-layer, extending the lexical knowledge submodel (see
Fig 1). We represent the phonological description of each
known word in a mirror manner to orthography: the proba-
bility distribution over phonemes ϕt

1:M , for all positions 1 to
M, is defined by a time-invariant naı̈ve Bayes model. M is
the maximal phonological length of words in the lexicon and
a specific phoneme value (#) is used to indicate the end of the
phonological sequence for shorter words.

For simplicity, we only represent words by phonemes at
each position, and do not address issues about the nature of
phonological representations here (e.g., syllabic vs phone-
mic). As for orthographic knowledge, in the experiment pre-
sented here, we identify phonological knowledge from the
Lexique 3.82 database (New, 2006).

Simulations
Since BRAID-Phon is a probabilistic model, it is formally
defined by a joint probability distribution, allowing to formu-

late and compute all possible conditional probability distri-
butions related to variables of the model. Therefore, simulat-
ing a given cognitive task amounts to choosing the variable
of interest XT , describing the input, known values (usually
describing the stimulus S1:T

1:N at all positions and for all time
steps, gaze position G1:T and the parameters µ1:T

A , σ1:T
A of

the attention distribution), and computing the corresponding
probability distribution P(XT | S1:T

1:N G1:T µ1:T
A σ1:T

A ).

Lexical Decision For instance, computing the probability
distribution over Dt , the dynamic variable of the lexical mem-
bership submodel, allows simulating the lexical decision task
(Phénix, 2018; Ginestet et al., 2019). Mathematically:

QT
LD = P

(
DT | µ1:T

A σ
1:T
A S1:T

1:N G1:T [λP
1:T
1:N = 1] [λD

1:T
1:N = 1]

)
The lambda variables λP

1:T
1:N and λD

1:T
1:N are coherence vari-

ables that allow selecting how information propagates in the
model (Gilet, Diard, & Bessière, 2011). Here, assuming they
are set to 1 means that information propagates throughout the
whole BRAID-Phon architecture. Computing QLD

T yields
the evolution over time of the probability value of the “yes”-
answer to the LD task (DT = True) for a given orthographic
stimulus S0:T

1:N .

Naming In a similar manner, the naming task is simulated
by computing:

QT
NMG =P

(
ϕ

T
1:M | µ1:T

A σ
1:T
A S1:T

1:N G1:T [λP
1:T
1:N = 1] [λD

1:T
1:N = 1]

)
Therefore, reading aloud is simulated in BRAID-Phon by in-
ferring the probability distributions over phonemes at each
time step, given an orthographic input, and their evolution
as sensory processing of the visual input proceeds. In sim-
ulations, NMG RTs are based on the probability distribution
over the first phoneme, provided that the whole sequence of
phonemes is correct. These criteria match the task conditions,
since behavioral RTs correspond to the beginning of the pro-
nunciation and are only reported for correct responses.

Progressive demasking The third task, progressive de-
masking, is simulated in BRAID-Phon as word recognition
was simulated in BRAID (Phénix, 2018), that is, we compute
the probability distribution over words at each time step:

QT
WR = P

(
W T | µ1:T

A σ
1:T
A S1:T

1:N G1:T [λP
1:T
1:N = 1]

)
However, stimulus presentation is particular in PDM, since
the word is gradually revealed. To do this, time is considered
as a sequence of periods (of 210 ms each in the Chronolex
experiment), each period divided further into a sequence of
cycles (of 14 ms each, so that there are 15 cycles per period).
Each period first shows the stimulus for a portion of the cycle,
then a mask made of # characters for the remainder of the
cycle. Initially, the stimulus is shown for 1 cycle and the mask
for 14 cycles, then 2 and 13, 3 and 12, etc.
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This is easily simulated in BRAID-Phon by adequately set-
ting the input values of stimulus variables S1:T

1:N , alternating be-
tween those of an input letter sequence and those of an input
mask sequence, as a function of time.

Experimental Data The Chronolex study (Ferrand et al.,
2011) provides a database of RTs for 1,482 French words,
each corresponding to the mean RT collected over 105 par-
ticipants. The dataset contains only monosyllabic and mono-
morphemic words of different lengths, from 2 to 8 letters,
with, understandably, few 8-letter monosyllabic words com-
pared to other lengths.

Procedure The BRAID model was previously calibrated
(Phénix, 2018) so that one simulated iteration corresponds
to one millisecond of physical time. In this work, we use the
default values of all parameters. In particular, the gaze po-
sition gT and the position of attentional focus µT

A coincide,
and are set to the central position of the stimulus (gT = µT

A =
(N + 1)/2, with N the stimulus length). The standard devia-
tion of the attention distribution is set to σT

A = 1.75.
Once run, simulations yield the evolution over time of

probability values of the variable of interest. A straightfor-
ward decision model is considered: to obtain simulated RTs,
we compute the number of iterations needed for the probabil-
ity value to reach a fixed decision threshold.

In the three considered tasks, the domains of the variables
of interest have different sizes: 2 for the lexical membership
variable DT , 40 for the first phoneme variable ϕT

1 and 92,117
for the word variable W T . Therefore, we allow for three dif-
ferent decision threshold values. To calibrate these (Ginestet
et al., 2019), we run simulations for 1,000 iterations for the
LD and NMG tasks, and 3,000 for the PDM task, then explore
a large set of decision thresholds, yielding error rates and a
mean square error to the behavioral data. Decision thresh-
olds are selected to solve the trade-off between these two
measures (details not provided here). Therefore, below, we
report results for the following threshold values: τLD = 0.9,
τNMG = 0.8 and τPDM = 0.5. Items for which the model pro-
vides an incorrect output or for which the considered prob-
ability curve does not reach the specified threshold are not
taken into account in the analyses. We note further that the
decision threshold for lexical decision τLD has the same value
as in previous work, which was based on an entirely different
dataset (Ginestet et al., 2019).

In order to compare the simulated RTs to the behavioral
RTs of the Chronolex study, we perform linear regressions
for each task, using two predictors: word frequency and word
length. Additionally, since NMG data is collected by auto-
matic analyses of audio recordings, it is affected by voice de-
tection biases, stress patterns, etc. Therefore, the Chronolex
NMG task regression also includes, as predictors, 13 control
variables related to the articulatory nature of the stimulus on-
set. Such analyses are common in the field (Spieler & Balota,
1997).

Results

BRAID-Phon correctly recognizes 98% of items in LD,
88.5% in NMG and 90.7% in PDM. Figure 2 and Figure 3 re-
spectively show regression lines for the frequency and length
effects, for behavioral and simulated RTs.

In the LD task, the two length and frequency fac-
tors explain 39% of simulated data variance (F(2,1458) =
316.4; p < .001) against 41% in the Chronolex data
(F(2,1458) = 524.6; p < .001). The model provides an ac-
curate simulation of the log-frequency effect: -30 iterations
per log(ppm) in simulation versus -38 ms per log(ppm) in the
Chronolex data. The length effect is also well predicted: 15
iterations per letter in simulation and 8 ms per letter in the
Chronolex data. The corresponding partial R2 are also simi-
lar: 0.20 in simulation versus 0.29 in the behavioral data for
the frequency effect and 0.06 versus 0.02 for the length effect.

In the NMG task, frequency and length explain 24% of
simulated data variance (F(2,1391) = 220.4; p < .001). For
Chronolex, the two factors and the onset control variables ac-
count for 53% of variance (F(14,1379) = 113; p < .001).
The slope of the frequency effect is -27.5 iterations per
log(ppm) in simulation versus -7.5 ms per log(ppm) in the
Chronolex data. The slope of the length effect is 23.1 itera-
tions per letter versus 4.9 ms per letter in the Chronolex data.
For the frequency effect, the partial R2 are 0.1 in simulation
versus .02 in behavioral data, and are respectively 0.1 versus
0.01 for the length effect. The word onset variables alone
account for 45% of Chronolex NMG RTs variability.

In the PDM task, the two predictors of length and
frequency explain 38.5% of simulated RTs variance
(F(2,1354) = 425.9; p < .001) and 19.3% in the Chronolex
data (F(2,1354) = 163.2; p < .001). The regression yields
large slope values for the simulation data: -170.7 iterations
per log(ppm) for the frequency effect and 72.53 iteration per
letter when dealing with the length effect (-21.5 and 20.3 re-
spectively in behavioural data). For this task, the partial R2 of
the length effect are equal (0.06) in simulated and Chronolex
data. The partial R2 of the frequency effect is 0.22 in simu-
lated RTs versus 0.06 in the Chronolex data.

Overall, for all tasks and effects, the simulation results con-
tains the same effects, and in the same direction, as observed
in the Chronolex data. A direct comparison of RTs for the
three tasks and the two effects shows that BRAID-Phon suc-
cessfully captures the general decrease of RTs with increasing
log-frequency and the general increase in RTs with increasing
length. As in the experimental data, RTs at the intercept are
far longer in PDM than in LD or NMG. However, BRAID
simulates similar intercepts for LD and NMG while RTs at
the intercept are longer for LD than NMG in the human data.
For both the frequency and length effects, the slopes of the
regressions are quite comparable in LD for the human data
and the simulations. However, we observe that BRAID-Phon
tends to overestimate the amplitude of the effects in NMG
and simulates exaggerated effects in PDM.
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Figure 2: Frequency effect on RTs simulated by BRAID-Phon (blue) and Chronolex RTs (green) and a scatterplot of item-level
RTs. To ease the comparison of the slopes, the y-axis of simulated RTs is shifted by a constant equal to the difference of the
two regressions intercepts.
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Figure 3: Length effect on RTs simulated by BRAID-Phon (blue) and Chronolex RTs (green) and a scatterplot of item-level
RTs. The y-axis of simulated RTs is shifted (see Figure 2).

Discussion
This study is a first attempt to account for the main effects
of word frequency and word letter length in three different
visual word processing tasks while using the same computa-
tional model and the same parameter values. The Bayesian
formalism we follow allows to derive from the same model,
in a mathematically rigorous manner, the tasks of lexical de-
cision, naming and progressive demasking.

As far as we know, no other computational model has
been evaluated on a multiple task study. Several computa-
tional models can successfully simulate LD and NMG per-
formance but most of the time evidence comes from very
limited datasets. Only one model attempted to simulate the
PDM task (see the MROM model, Carreiras et al. (1997))
and the model parameters were adapted to match the experi-
mental conditions. In contrast, the simulations we performed
were computed while using the same parameter values for all
three tasks. The decision threshold value was taken from pre-
vious simulations for LD; thresholds were fixed for the new
tasks of NMG and PDM using the same method as previously
for LD.

We used BRAID to simulate the very classical effect of fre-
quency that most models have previously simulated. BRAID
was further checked for its ability to account for the length
effect. Although being a very robust behavioural effect in a
variety of tasks, previous models could only account for the
length effect in naming. We show that BRAID-Phon suc-
cessfully predicts the direction and the order of magnitude
of the length effect in LD, NMG and PDM. In particular,

the model quite successfully simulates length effects in LD,
which was challenging for previous models. The model ap-
pears to be robust, as similar success was previously reported
for BRAID when confronted to the French Lexicon Project
dataset (Ferrand et al., 2010) to simulate length effects in LD
(Ginestet et al., 2019).

In most theoretical frameworks, the length effect was
viewed as inherently related to serial processing (Coltheart et
al., 2001; Perry et al., 2007). Counter-intuitively, the length
effect in our model is a consequence of the parallel process-
ing of letters and of limited visual attention resources. Given
that a limited amount of visual attention is available for let-
ter processing, letters are more efficiently processed in shorter
words than in longer words. Therefore, shorter words are rec-
ognized faster than longer words. In the model, the same two
mechanisms of parallel processing and visual attention lim-
itation account for the deleterious effects of word length on
the number of iterations in all three tasks.

Nevertheless, BRAID-Phon is confronted to several limi-
tations in its current implementation. First, the model imple-
ments phonological knowledge in a very simplistic way and
does not include any information about articulatory features
of speech. This may explain some discrepancies between the
experimental data and simulated findings. Indeed, behavioral
data shows that the identity of the first phoneme explains up
to 45% of naming latencies variability (Yap & Balota, 2009),
suggesting that, in the NMG task, Rts are affected by articula-
tory planning and speech production of the word to be named.
Such considerations are absent of BRAID-Phon, since it is re-
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stricted to stimulus recognition.
Second, BRAID-Phon tends to exacerbate length effects,

in particular in PDM. We have previously shown that length
effects in LD are better captured when allowing the model
to shift attention and gaze position during word processing
beyond 6 letter length (Ginestet et al., 2019). Such visuo-
attentional shifts would reduce the amplitude of length effects
in all three tasks, particularly in PDM, where RTs are around
1.2 s, making visuo-attentional shifts highly likely in partic-
ipants. Moreover, the PDM task is a particular condition in
which participants are instructed to respond as quickly as pos-
sible, as soon as they think they have identified the word. The
instruction may thus favor guessing strategies which would
correspond in the model to higher reliance on lexical knowl-
edge. Better fit are thus expected if we allowed higher top-
down influence from the lexical submodel to the letter per-
ception submodel.
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