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Abstract

Retrieval-induced forgetting (RIF) is a paradigm where re-
peated study and cue-based retrieval of words impair retrieval
of related, but unstudied, words. We present a process model,
situated in the ACT-R/E cognitive architecture, that accounts
for the RIF task using the architecture’s overarching theory of
associative learning. In this theory, studying words strengthens
their association with their related cues; this, in turn, weakens
the association between those cues and any other words they
are related to. We show this account fits a recent dataset that
explores cueing in the RIF task (Perfect et al., 2004).
Keywords: associative learning; spreading activation; prim-
ing; cognitive architecture; retrieval-induced forgetting

Introduction
The retrieval-induced forgetting (RIF) paradigm, first intro-
duced by M. C. Anderson, Bjork, and Bjork (1994), is a cog-
nitive task where repeated study and retrieval of words im-
pairs retrieval of related, but unstudied, words. In a typical
RIF experimental task, participants learn category-exemplar
pairs (i.e., SPORT-rugby, SPORT-tennis, etc.), where each
category contains several members. During a practice phase,
participants rehearse only some members of some categories.
Then, during testing, participants are cued with each category
and are asked to recall all members of that category. Using
items of unpracticed categories as a baseline, practiced items
of practiced categories are more likely to be recalled, whereas
unpracticed items of practiced categories are less likely to be
recalled. This forgetting is the hallmark of the RIF effect.

One explanation for this diminished availability is via inhi-
bition (Levy & Anderson, 2002; M. C. Anderson et al., 1994),
where the unstudied words of practiced categories are sup-
pressed during retrieval so that they do not interfere with the
practiced items. Because of this suppression, the practiced
items are more likely to be recalled than the unstudied words,
causing the canonical RIF effect.

A second, competing, account of this effect is an associa-
tive model, where associations between the categories and
words are strengthened with practice (M. C. Anderson &
Spellman, 1995). Here, when cued by the category, the
stronger association between the category and the practiced
items makes the practiced items more available for retrieval
when the category is used as a cue. Thus, even though the un-
studied word is not necessarily inhibited, the encouragement
of the studied word increases its chance of being recalled rel-
ative to unstudied words, again causing the RIF effect.

To test between these, M. C. Anderson and Spellman
(1995) argue that it is necessary to use an independent re-
trieval cue at the final test stage, instead of the category itself.
This independent retrieval cue is unique to each exemplar and
is not practiced during the rehearsal phase. If inhibition is the
correct account, forgetting should occur with both the cate-
gory cue and the independent cue. If associative learning is
the correct account, then forgetting should only occur with
the category cue, not the independent cue, since that is what
is being affected by the rehearsal phase.

To this end, Perfect et al. (2004) ran a version of the RIF ex-
periment that included a second cue, unique to each exemplar,
that participants learned along with the categories and exem-
plars. The cue was not present during the rehearsal phase.
Then during testing, participants were either cued with the
category, the unique cue, or both. The results showed that,
while the typical RIF patterns were exhibited when partici-
pants were cued with the category during testing, that pattern
did not hold when cued with the unique cue. This supports
the associative explanation of the RIF task.

Here, we provide further evidence that the RIF paradigm
can be explained via associative learning. We present a cog-
nitive process model of the task, situated in the ACT-R/E ar-
chitecture (Trafton et al., 2013), that uses associative learning
to capture and explain the experimental results. The under-
lying associative learning mechanisms are part of our overall
architectural account, and have been used to capture a large
body of other cognitive effects that involve associative learn-
ing (e.g., Hiatt & Trafton, 2017; Hiatt, 2017; Hiatt & Trafton,
2015a). A critical feature of our associative learning account
is that associations can both strengthen and weaken, depend-
ing on the model’s exposure to items. We show our model’s
ability to account for the main effects of the RIF paradigm by
modeling Experiment 1 from Perfect et al. (2004).

Experiment
The specific experiment we model is Experiment 1 from
Perfect et al. (2004). In it, participants learn a set of exem-
plars (the training phase), rehearse a subset of them (the re-
hearsal phase), perform a distractor task, and then are asked
to retrieve the exemplars under several conditions (the testing
phase). There were 24 exemplars in the study, each assigned
on one of six categories, with four exemplars per category.
The exemplars and categories are shown in Table 1. Ninety
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participants were involved in the study.

SPORT rugby, tennis, swimming, hockey
COUNTRY France, Italy, Spain, Greece

PET hamster, parakeet, gerbil, rabbit
FOOD cheese, fish, pasta, burger
DRINK tequila, vodka, wine, lager
HOBBY cooking, reading, painting, drawing

Table 1: The categories and exemplars (Perfect et al., 2004).

During the training phase, participants viewed exemplars
one by one, with two types of cues: their category, and a pho-
tograph of a human face, which is arbitrarily paired with, and
unique to, each exemplar. Participants were instructed to try
to relate each item to its category and to the face. Exemplars
were presented at a rate of 4 seconds per item, with a 1 second
inter-stimulus interval.

During the rehearsal phase, participants practiced two
items from four different categories. For the rehearsal, par-
ticipants saw the category, plus the (unique) first two letters
of the exemplar as an exemplar stem. Participants were in-
structed to complete the word stem with the appropriate ex-
emplar. Participants had 4 seconds to do so. The 8 total re-
hearsal items were repeated three times in random order.

After the rehearsal phase, participants engaged in a 7
minute distractor task of performing visual puzzles. Partic-
ipants then underwent one of three testing conditions. In the
category condition, participants were cued with each of the
six categories in random order and, for each, had 20 seconds
to write down all exemplars of that category that they could
remember. Between categories there was a 1 second interval.

In the face condition, participants were shown each of the
24 faces in random order and were asked to respond with the
associated exemplar. They had 5 seconds to write down their
response, with a 1 second interval between faces.

Finally, in the joint condition, participants saw both the cat-
egory and face of each of the exemplars as cues, in random
order, and had 5 seconds to write down their response of the
exemplar associated with the face. As before, there was a 1
second inter-stimulus interval.

Experimental Results
The data reveal two interesting trends. First, in all three con-
ditions, the practiced items (RP+ items) had the best recall
performance, on average; in contrast, unpracticed items from
the practiced categories (RP- items) had the lowest. Items
from unpracticed categories (U items) fell generally in the
middle. This first trend represents the canonical RIF effect,
where unpracticed items from practiced categories seem to be
forgotten (RP-), relative to both practiced items in practiced
categories (RP+) and items in unpracticed categories (U).

Second, on average, this effect was very obvious in the cat-
egory condition, slightly present in the joint condition, and
only marginally present in the face condition. Recall from the

discussion in the introduction that participants’ responses in
the presence of an independent cue are viewed as providing
evidence for either the inhibition account or the associative
learning account of the RIF task. Here, the face cue provides
that independent cue, since it is unique to each exemplar and
is not present in the rehearsal condition.

In an inhibitory account, then, one would expect the pat-
terns of responses in the face cue to be similar to those of
the category condition, with RP- inhibited relative to both
RP+ and U. In an associative learning account, however, one
would expect it to have a greatly modulated RIF effect, with
little difference between the conditions, since the independent
cue is not affected by the rehearsal and so remains constant
across conditions. These results clearly support the pattern
one would expect for the associative learning account. Ac-
cordingly, the account provided by Perfect et al. (2004) for
these results supports the associative learning view of RIF.

Next, we discuss our models of these results, including
how we interpret and capture the two main trends.

Model
We developed a process model of retrieval-induced forgetting
situated within the computational cognitive architecture ACT-
R/E. As part of associative learning in this architecture, con-
cepts that are thought about in working memory at the same
time become associated, and then can prime one another if
one is thought about at a later time, facilitating retrieval into
working memory. The more that two concepts are thought
about together, the stronger their association becomes; how-
ever, if the two concepts are thought about separately, their
connection weakens. It is this combination of strengthening
and weakening that, in large part, we will later rely upon to
explain retrieval-induced forgetting.

Model Architecture
ACT-R/E (Trafton et al., 2013) is an embodied version of the
ACT-R cognitive architecture (J. R. Anderson, 2007). At a
high level, ACT-R/E is an integrated, production-based sys-
tem. At the core of ACT-R/E is its working memory; the
contents of working memory indicate, for example, what the
model is looking at, what it is thinking, and its current goal.
Working memory is represented as a set of limited-capacity
buffers that can contain thoughts or memories.

At any given time, there is a set of productions (if-then
rules) that may fire because their preconditions are satisfied
by the current contents of working memory. From this set, the
production with the highest predicted usefulness is selected
to fire. The fired production can either change the model’s
internal state (e.g., by adding something to working memory)
or its physical one (e.g., by pressing a key on a keyboard). In
our discussion, we abstract over these productions and instead
describe processes at a higher level (i.e., we say that we look
at an object, instead of discussing the 3-4 productions that
must fire to achieve that).

In addition to containing symbolic information (i.e., factual
information), memories have activation values that determine
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how easy they are to remember at any given time. When a
request is made for a memory to be retrieved into working
memory, the memory that matches the request and has the
highest activation is the one that is added into working mem-
ory. Memories with higher activations are added to working
memory more quickly; memories with very low activations
may not be able to be retrieved at all. Activation has three
components, activation strengthening, spreading activation,
and activation noise, that together have shown to be an excel-
lent predictor of human declarative memory (J. R. Anderson,
Bothell, Lebiere, & Matessa, 1998; Schneider & Anderson,
2011; Thomson, Harrison, Trafton, & Hiatt, 2017). Activa-
tion noise is an instantaneous random component that models
the noise of the human brain. Activation strengthening1 is
learned over time and is based on the frequency and recency
with which a memory has been in working memory in the
past. It is designed to represent the activation of a memory
over long periods of time.

Spreading activation, in turn, is a short-term activation
boost that is meant to capture a memory’s relevance to the
current situation. Spreading activation is based on associa-
tions between different concepts in memory. Memories be-
come associated when they are in working memory at the
same time; associations are not created ahead of time. Asso-
ciations are also directed, but may exist between concepts in
both directions. Once established, an association from mem-
ory j to memory i has a strength value that affects the degree
to which j spreads activation to i, and intuitively reflects the
probability that memory i is expected to be relevant while
thinking of memory j. This allows associative learning to
capture correspondences between memories that are expected
to be relevant at the same time, as well as memories that are
semantically related (such as an object and its corresponding
color and shape).

Association strengths are calculated in a Bayesian-like
way, and are a non-standard adaptation of ACT-R’s Bayesian-
based associative mechanisms. Because of their Bayesian-
like calculation, association strengths increase when concepts
are thought about together, but can also weaken between two
concepts if they are thought about separately instead of to-
gether. We use this adaptation to account for the large num-
bers of associations and objects needed by the experiment
we consider here, which ACT-R’s original formulation can-
not do. These equations have been successful in modeling
associations and priming in other work across a variety of do-
mains (e.g., Harrison & Trafton, 2010; Trafton et al., 2013;
Hiatt & Trafton, 2015a, among others). The equations are
included and described in (Hiatt & Trafton, 2017).

Spreading activation sources from the contents of working
memory, and distributes activation along associations lead-
ing from those contents to concepts in long-term memory; in
other words, the contents of working memory serve as cues
for retrieval and prime their connected concepts. Generally,

1Activation strengthening is also referred to as base-level activa-
tion in other literature describing ACT-R and ACT-R/E.

exemplar_3exemplar_2

exemplar_1

category_b

category_a

working memory

Figure 1: Spreading activation in ACT-R/E. Working mem-
ory contains two items; items with spreading activation are
designated with dotted outlines. Typically, activation spreads
one “hop” out from working memory (concept a to exem-
plar 1); if certain associative patterns appear, however, as-
sociation can also spread two “hops” from working memory
(exemplar 2 to exemplar 3).

activation spreads to a depth of one, and primes only concepts
with a direct connection to those in working memory.

In addition, ACT-R/E’s theory of associative learning also
allows spreading activation to travel along two associations
when a specific associative pattern is present. If there is a
concept k that is in working memory, and there exist two other
concepts i and j such that j primes i and j primes k, spreading
activation flows through j and primes i. We refer to this spe-
cial case of spreading activation as “two-hop” priming. The
two cases of how activation spreads in ACT-R/E are shown in
Figure 1. See Hiatt and Trafton (2017) for more information
on ACT-R/E’s learning mechanisms.2

ACT-R/E models interact with the world using ACT-R/E’s
built-in functionality for doing so. Models can view visual
items on a virtual monitor, and can act on the world by push-
ing keys on a virtual keyboard and clicking a virtual mouse.
ACT-R/E models are also inherently tied to physical embod-
iment (i.e., executing models on a robot), but we do not use
that functionality in this paper.

Model Details
The ACT-R/E model for this experiment includes four basic
steps consistent with prior models used to capture human per-
formance on a task that requires the use of associative mem-
ory: look at experimental stimuli, add experimental stimuli
to memory, retrieve other knowledge necessary to perform
the task, and respond as appropriate (Hiatt & Trafton, 2017;
Hiatt, 2017; Hiatt & Trafton, 2015b, 2015a). Each of these
steps is kept as simple as possible throughout the model. As
with these other models, properties of associative memory
are not modeled in isolation. The model starts out with the
task knowledge and productions necessary to complete the
tasks. It also assumes moderate prior exposure to the cate-
gory and exemplar names, since the participants would have
encountered them frequently in their daily lives. It does not

2Note that in this manuscript, the phrase “two-hop” isn’t used;
instead, the two steps are referred to separately as source activation
and spreading activation.
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include, however, any prior exposure to the face photographs,
since it is unlikely participants would have seen those specific
photographs before. There are no initial associations; all are
learned during the experiment.

The model is shown the stimuli as the participants are, and
preserves correspondence with the human timing informa-
tion. The model “looks at” the stimuli as participants do via
its virtual monitor; it digitally logs its responses in lieu of par-
ticipants’ handwritten responses. As part of the architecture,
ACT-R/E encodes each face as a unique token concept.

During the training phase, when the category, exemplar and
face are shown at the same time, the model looks at the items
randomly and repeatedly for the entire 4 seconds that they
are on the screen. Each time the model looks at an item, it
encodes the item and adds it to working memory. While this
encoding takes place, the model proactively moves on to look
at another item. Consequently, items viewed sequentially be-
come associated with one another since they appear in work-
ing memory at the same time: one at the end of the encoding
process, and the next as it is being looked at and queued up for
encoding. Note that, although on average the associations are
equal between the three items, the model is looking around
randomly and so they are not always equal. At the end of
training, all of the RP+, RP- and U exemplars have roughly
identical associations, with moderate associative strengths to
and from from their categories and faces. Their activation
strengthening is also affected by ordering effects: earlier ex-
emplars have lower activation strengthening than those seen
near the end of training.

During the rehearsal phase, the model first looks for, and
retrieves/encodes, both the category and the prompt. Then,
while thinking of both the category and the prompt, the model
retrieves the corresponding item. Because our overarching
architecture does not have a theoretical way of modeling
lexical-based prompts, we simply assume that, given the two-
letter prompt, participants always retrieve the correct item.
Since the category is in working memory when the exemplar
is retrieved, the association from the category to the exem-
plar is strengthened each time it is rehearsed. The activation
strengthening of the exemplar is increased, as well.

During the experimental puzzle task, the model performs a
task with productions and concepts unrelated to those of the
experiment’s categories, faces and exemplars; it performs no
additional rehearsal of the cues/exemplars during this time.

After the distractor task, the model has clear patterns of as-
sociations and activation for the RP+, RP- and U groups of
exemplars. The RP+ exemplars, which were rehearsed with
the corresponding category and prompt, have both higher ac-
tivation strengthening and stronger associations leading to
them from their parent category. The associations from the
faces to the RP+ exemplars do not change.

The RP- exemplars have activation strengthening that is
slightly lowered, since time has passed without them appear-
ing in working memory. In addition, while the associations
from the faces to the RP- exemplars have also not changed,

RP+

RP-

U

category

category

face

face

face

Figure 2: An abstract representation of the model’s memory
and associations after the distractor task. Concepts’ outline
thickness indicates their activation strengthening; the thick-
ness of the arrows between concepts indicates the strength
of their association. For example, RP+ exemplars have the
highest activation strengthening, as well as the strongest as-
sociation from their category; RP- exemplars have the weak-
est association from their category. Note that, for clarity, not
all associations are depicted here (such as links between faces
and categories).

the association from the categories to the RP- exemplars have
weakened. This is because the RP- categories have been in
working memory during the rehearsal, but the RP- exemplars
did not appear with them.

The U exemplars also have a slightly lower activation
strengthening, since they have not been in working mem-
ory for a while. Their associations, however, are unchanged,
since the categories, faces and exemplars have not been in
working memory. The associations at this point, as well as
activation strengthening, are abstractly shown in Figure 2.

During testing, in the category condition, the model first
looks at and adds the category to working memory. Using
the category as a cue, it then tries to sequentially retrieve the
four distinct exemplars in memory with the highest total ac-
tivation. It reports all exemplars it retrieves without further
checking their membership in the provided category.

For the face condition, the model looks at and adds the face
to working memory. While thinking of the face and using it as
a cue, it then retrieves an exemplar from working memory and
responds with it. The same process occurs during the joint
condition, except with both the face and category in working
memory during the retrieval.

Model Results
We used our model to simulate data from 100 participants
per condition (300 participants total) in order to allow our
results to better converge on the model’s true predictions.
Each model “participant”, regardless of condition, saw the
stimuli in a different random order, as well as had different,
randomly-chosen RP+ exemplars. The model had the same
parameters for each condition. The activation strengthening
decay parameter (also called the base level learning parame-
ter) was set to 0.3 instead of its default of 0.5. The activation
noise parameter was set to 0.2 instead of its default of 0. The
associative learning rate was set to 3.5, representing a mild
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Figure 3: Results of ACT-R/E model. Bars show the experi-
mental data, and error bars show one standard deviation above
and below the mean for the experimental data. Dots indicate
the model data.

rate of learning. There is no default value for this parameter.
All other parameters were at their default values. For more in-
formation about how these parameters mathematically relate
to the model, please refer to (Hiatt & Trafton, 2017).

The quantitative model results are shown in Figure 3. The
y axis indicates the average number of exemplars correctly
recalled, out of 8 possible, for each exemplar category. The
error bars show one standard deviation above and below the
mean for the experimental data. Overall, as the graph shows,
the model does an excellent job of capturing the human data,
with R2 = 0.94.

During the category condition, recall that the model is
asked to respond with all exemplars of the category, not just
one. Because of the strong association from categories to
RP+ exemplars and their higher activation strengthening, the
model is almost always able to retrieve a correct RP+ exem-
plar initially. Then, once the model has retrieved an exemplar,
that exemplar is in working memory until the next exemplar
is retrieved. That exemplar further cues other exemplars in
its category via the two-hop priming described above (see the
bottom of Figure 1).

This means that, as the model gets more exemplars cor-
rect, it gains momentum and becomes slightly more likely to
retrieve further correct exemplars. With this initial momen-
tum in place, the model generally retrieves the rest of the RP+
exemplars correctly as well. For the RP- condition exem-
plars, because those exemplars receive less activation from
their associated categories, even with the model’s momen-
tum the model retrieves an exemplar from a different category
fairly often, such as one with a higher activation strengthen-
ing from ordering effects. The U condition exemplars, which
receive a medium amount of priming, lie in the middle, of-

ten being correctly retrieved, but sometimes not. This very
closely matches the experimental data.

For the face condition, the only difference between the
three conditions is in the RP+ exemplar’s higher levels of ac-
tivation strengthening. All exemplars receive a small amount
of activation when cued by their associated face. The RP+ ex-
emplars, therefore, are slightly more likely to have the highest
activation overall, and thus be retrieved; the other conditions
are equally likely to have correct responses. This is similar to
the experimental data, where all three conditions have similar
correct responses, on average.

During the joint condition, the model behaves similarly to
the category condition, with three main differences: (1) it has
only one response, not four; (2) it does not have any of the
previously discussed “momentum” since the model retrieves
only one exemplar for each prompt; and (3) all exemplars re-
ceive a small boost in spreading activation from the displayed
face concept. Thus, it still performs the best on RP+ exem-
plars, the worst on RP- exemplars, and in the middle on U ex-
emplars, but with slightly higher correct response rates. This
follows the overall pattern of the experimental data, where the
RP+ condition had the highest response average, the RP- the
lowest, and the U condition is only slightly higher than RP-.

Model Discussion
There are several features of associative learning in ACT-R/E
that allow it to capture the experimental data. The first is that
associations start out weak and strengthen over time. This
explains why, for example, in the face condition, people do
not respond perfectly despite the unique cue: they have not
been exposed to those two concepts, together, enough times
to strengthen the association enough.

A second feature of ACT-R/E that allows it to explain the
results is its “two-hop” priming. Recall that this priming oc-
curs during the category condition, where participants recall
multiple exemplars for each category cue and, via two-hop
priming, build up momentum in their responses. This mo-
mentum is what allows ACT-R/E to perform so much better in
the category condition than it does in the face and joint con-
ditions: the momentum allows it to correctly retrieve more
exemplars than it would otherwise.

Perhaps the most important feature of our associative ac-
count with respect to the RIF task is that associative strengths
weaken when the underlying concepts are thought about sep-
arately. This leads to a weaker association between categories
and RP- exemplars after the rehearsal phase, because the cat-
egories are thought about in conjunction with the RP+ exem-
plars. This weakening allows the model to capture the “for-
getting” part of retrieval-induced forgetting, where the recall
of RP- items is weakened after rehearsal of RP+ items.

General Discussion
We have presented here a process model of Experiment 1
from Perfect et al. (2004) that uses an existing theory of as-
sociative learning to explain results of the retrieval-induced
forgetting task. This both provides further evidence for our
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associative learning theory, as well as supports the thought
that RIF is tied to associative learning, as is suggested by
the study we model. One conclusion of Perfect et al. (2004),
however, that our model does disagree with is whether the
two cues (category and face) both refer to the same exemplar
representation in memory. The authors of the paper argue
that, since RP+ items weren’t clearly more available when
cued by the face, the rehearsal phase must not have made
them more available in memory (via, in our terminology, ac-
tivation strengthening). Our model disagrees with this con-
clusion of the experimental data. As our results show, both
cues can refer to the same exemplar representation in mem-
ory, which does have a higher activation strengthening than
the other exemplars. Due to, in part, the large length of time
of the distractor task, as well as ordering effects, however, the
relative magnitude of this activation strengthening in the face
condition is small.

While our results more closely align with the view that the
RIF task is driven by associative mechanisms, our model in-
cludes some dynamics that can be construed as inhibitory. To
clarify, during the task, both the activation strengthening and
spreading activation of RP- items lower, with respect to RP+
items, because of the rehearsal phase. Regarding activation
strengthening, RP- item’s values decay because they are not
thought about as recently. However, this does not support the
inhibitory account of RIF because the same decay also occurs
for U items. For spreading activation, RP- items’s association
with the category weakens because the category is thought
about without the RP- items. And, as we have stated above,
a key feature of our model is that if items are seen separately,
their association is weakened (Melton & Irwin, 1940). The
lessening of activation of RP- items then leaves them more
open to interference from other exemplars, leading to their
decreased retrieval relative to U items.

So, although the RP- items were not inhibited in memory in
our account in the canonical sense, their activation included
inhibitory dynamics. We find that the critical distinction be-
tween the inhibitory and associative accounts both in the orig-
inal work and in our model is not simply whether or not there
is a decrease in activation for RP- items during competitive
retrieval, but also if the mechanism for that decrease differen-
tially lowers the activation of RP- items more than U items.
As we have stated, our model captures this. This connects
our results with wider thoughts in the cognitive science lit-
erature which suggest that, in the debate between decay and
interference as the principle driver of memory, both decay and
interference play a key role (Altmann & Schunn, 2012). By
providing an implemented model of how these mechanisms
affect behavior and memory as the RIF task unfolds, we are
able to relate together inhibition, interference, decay and as-
sociations in a unified fashion to better understand retrieval-
induced forgetting. Still, in this work we have modeled only
one of many studies on RIF; the next step in this work is to
apply our associative learning model to a broader range of
RIF experiments.

References
Altmann, E., & Schunn, C. (2012). Decay versus interfer-

ence: A new look at an old interaction. Psychological Sci-
ence, 23(11), 1435–1437.

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? Oxford University Press.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M.
(1998). An integrated theory of list memory. Journal of
Memory and Language, 38(4), 341–380.

Anderson, M. C., Bjork, R. A., & Bjork, E. L. (1994). Re-
membering can cause forgetting: Retrieval dynamics in
long-term memory. Journal of Experimental Psychology:
Learning, Memory and Cognition, 20, 1063–1087.

Anderson, M. C., & Spellman, B. A. (1995). On the status of
inhibitory mechanisms in cognition: Memory retrieval as a
model case. Psychological Review, 102, 68–100.

Harrison, A. M., & Trafton, J. G. (2010). Cognition for ac-
tion: an architectural account for “grounded interaction”.
In Proceedings of the Annual Meeting of the Cognitive Sci-
ence Society.

Hiatt, L. M. (2017). A priming model of category-based
feature inference. In Proceedings of the Annual Meeting of
the Cognitive Science Society.

Hiatt, L. M., & Trafton, J. G. (2015a). An activation-based
model of routine sequence errors. In Proceedings of the
International Conference on Cognitive Modeling.

Hiatt, L. M., & Trafton, J. G. (2015b). A computational
model of mind wandering. In Proceedings of the Annual
Meeting of the Cognitive Science Society.

Hiatt, L. M., & Trafton, J. G. (2017). Familiarity, priming
and perception in similarity judgments. Cognitive Science,
41(6), 1450-1484.

Levy, B. J., & Anderson, M. C. (2002). Inhibitory processes
and the control of memory retrieval. Trends in cognitive
sciences, 6(7), 299–305.

Melton, A. W., & Irwin, J. M. (1940). The influence of de-
gree of interpolated learning on retroactive inhibition and
the overt transfer of specific responses. American Journal
of Psychology, 53, 173-203.

Perfect, T. J., Stark, L.-J., Tree, J. J., Moulin, C. J., Ahmed,
L., & Hutter, R. (2004). Transfer appropriate forgetting:
The cue-dependent nature of retrieval-induced forgetting.
Journal of Memory and Language, 51(3), 399 - 417.

Schneider, D. W., & Anderson, J. R. (2011). A memory-
based model of hick’s law. Cognitive Psychology, 62(3),
193–222.

Thomson, R., Harrison, A. M., Trafton, J. G., & Hiatt, L. M.
(2017). An account of interference in associative memory:
Learning the fan effect. Topics in Cognitive Science, 9(1),
69-82.

Trafton, J. G., Hiatt, L. M., Harrison, A. M., Tamborello, II,
F., Khemlani, S. S., & Schultz, A. C. (2013). ACT-R/E:
An embodied cognitive architecture for human-robot inter-
action. Journal of Human-Robot Interaction, 2(1), 30-55.

3190


