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Abstract 

 
I examine the representational formats of perceptual states and 
cognitive states related to perception, such as perceptual beliefs 
stored in long term memory, and argue, first, that despite their 
important differences they both have an iconic ingredient. 
Then, I explain how this common iconic component of 
perceptual and cognitive contents allow cognitive states to 
modulate perceptual processing focusing on a recent argument 
made by Burnston (2017) to the effect that owing to their 
differing representational formats cognition cannot affect 
directly perception. 
 
Keywords: analog/symbolic representation; representational 
formats in memory; cognition/perception interaction 
 

Introduction 
Cognitive and perceptual states are held by many (Ayers 
2019; Burge 2010; Burnston 2017; Carey 2009; Crane 2003; 
Dretske 1981; Fodor 2007; Goodman 1976; Heck 2007; 
Haugeland 1987; Jackendoff 1987; Peacocke 1986, 2019) to 
be cast in different representational formats, namely, digital 
or symbolic, and analog formats respectively.  

Assuming this distinction, if one holds that cognition and 
perception interact the problem immediately emerges as to 
how this interaction could take place in view of the differing 
representational formats. (I do not discuss whether the 
analog/digital distinction of states is parallel to the 
analog/digital distinction of contents. I assume this since my 
arguments can to accommodate both cases.)  

Burnston (2017) has argued that cognitive states cannot 
penetrate perceptual processes in the way this interaction is 
usually thought, i.e., by the Internal Effect View (IEV) 

P is penetrated if, over a specific input, it would 
perform a certain computation C leading to content 
R1 in the absence of a cognitive state, S, but 
performs a different computation C2, yielding 
content R2, when S is present, where the causal, 
semantic coherence, and computation conditions 
are met. 

In IEV, cognitive states modulate perception when they 
modify the computations performed by perceptual 
processes. In this case, the cognitive states causally affect 
the perceptual states; the causal condition. Finally, the 
content of the modified perceptual state should be 
intelligibly related to categorical facts concerning the 
content of the penetrating cognitive state; the semantic 
coherence condition. Consider the putative case of CP of 
color perception in the Delk & Fillenbaum (1965) 
experiment. Participants were shown paper-cut objects 

presented in an orange-red color and when asked to 
match the background color to that of the presented object 
tended to make the background a more saturated red for 
stereotypically red objects (hearts) than for stereotypically 
non-red objects. Perception should receive as input the 
orange-red and the participants should match the 
background orange-red color, R1, but owing to the 
penetrability of the perception by the belief that hearts 
have a saturated red color, choose a more saturated red R2. 
Let us call this, the direct effect of cognition on perception. 

Burnston (2017) argues that owing to their different 
representational format, cognitive states cannot affect 
perceptual states that have purely iconic contents, in the way 
described by IEV. Owing to their symbolic format,  
cognitive states lack the necessary structure that would 
allow them to modify perceptual computations. Cognitive 
representations are discrete or atomic, have no referentially 
relevant internal structure, and their contents do not 
specify any properties of their referents. This is why they 
cannot affect perception whose iconic states have a rich 
internal structure that maps naturally to the representatum. 

Burnston thinks that the cognition/perception interaction 
is described by the External Effect View (EEV). 
Accordingly, cognitive effects do not modify the perceptual 
computations but, instead, change or bias the distribution of 
probabilities of all possible perceptual processes that could 
be applied to a stimulus so that the perceptual processes 
associated with the concept(s) figuring in the affecting 
cognitive contents have their probability of being applied 
to that stimulus increased (indirect cognitive effect). 

I have argued (Raftopoulos 2009; 2019) that cognitive 
states affect perception directly in the way described by 
IEV. I defend here this view in the face of Burnston’s 
objections in two parts. The first, which concerns the 
formats of perceptual and cognitive representations is 
developed here. The second is about the mechanism by 
means of which cognitive states modulate perceptual 
processing. I sketch an account of this issue. By perception I 
mean ‘early vision’, because it is there that cognition 
interfaces with purely iconic perception.  

The cornerstone of my defense is that cognitive states that 
are thought to affect directly perceptual processing, namely 
perceptual beliefs, have an iconic ingredient, in addition to 
their symbolic/conceptual content. This means that they are 
hybrid states that have the requisite structure to be mappable 
in systematic, natural ways to their representatum and this 
structure allows them to affect directly perceptual 
processing.  
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Digital Representations 
For Jackendoff (1987, 181-2), symbolic representations, 
which he calls algebraic representations, represent their 
objects by means of arbitrary symbols that have no bearing 
to the physical appearance of the objects. In algebraic 
representations, spatial relations are formal relations 
between pairs of symbols and, thus, have a formal character 
that does not distinguish them from other representations 
that happen to have the same formal character; the algebraic 
representation x is to the left of y is parallel in formal 
character to the representation x possesses y.  

According to Goodman (1976), a representation is 
symbolic or digital if it contains discrete symbols, signs that 
refer through a convention (‘cat’, for example, refers to a 
certain kind of animals through an agreement of a linguistic 
community). A symbolic notation is discrete or 
differentiated, according to Goodman (1976, 148-152), if it 
is semantically and syntactically disjoint, as opposed to 
semantically and syntactically dense. A representational 
system or scheme is differentiated if “for every two 
characters K and K’ and a mark m that does not actually 
belong both, determination either that m does not belong to 
K or does not belong to K’ is theoretically possible.” 
(Goodman 1976, 135-136)  

Thus, the first property of symbolic representations is that 
they are necessarily discontinuous and non-dense. Secondly, 
since symbols refer only through some convention, any 
composition of symbols that is also a (complex) symbol 
refers through conventions and does not bear any other 
relation to its referendum. Consider the symbol/concept 
‘CAT’. ‘CAT’’s structure is that of a simple concatenation 
of less complex symbols. ‘CAT’ refers solely by 
convention, and, so, no part of ‘CAT’ refers to cat body 
parts or to their features and there is no natural 
correspondence between the constituents of the representing 
symbolic structure and the body parts and features of a cat. 
“The word dog, in contrast (the contrast is to iconic 
representations, my comment) contains no information 
about ears or any other part of a dog.” (Carey 2009, 135).  

Third, symbolic representations have canonical 
decomposition and have syntactic structure because they 
consist of distinguishable discrete parts. A symbolic 
representation is compositional because its syntactic 
structure is determined by the syntax of its parts and the 
syntactic features that are used in the composition. The 
complex symbol p&q, whose truth value depends on the 
truth values of p and q and the way the logical connective 
‘&’ functions, is such an example. According to Fodor 
(2007), symbolic/conceptual representations are discursive 
and can be recombined the right sort of way. Symbolic 
representations allow the representation of logical 
connectives and quantifiers. Thus, states with symbolic 
contents can recombine in systematic ways to produce new 
states. This is closely related to the fact that symbolic 
contents are conceptual, and the recombinability of concepts 
to form new thoughts is taken for granted. 

Fourth, the discreteness of symbolic representations is 
important for their function as concepts. Concepts are like 
on-off switches; ‘on’ means that a token belongs to a certain 

type, and ‘off’ means that the token does not belong to that 
type. For any token K it is theoretically possible to 
determine whether K belongs to the type L or not. This is 
possible because symbolic representations are differentiated. 

 
Analog or Iconic Representations 

Those who think that perception and cognition have 
different representational formats hold that while cognitive 
states have symbolic contents, purely perceptual states have 
analog or iconic content. The relationship between analog 
and iconic is complicated and depends largely on how one 
understands ‘analog’. All analog representations are iconic, 
but whether iconic representations are analog is debatable. 

Let us start with the minimal conception of analog as an 
iconic representation. A representation is iconic if it has an 
inherent structure that maps naturally onto the structure of 
the represented entity. This entity can be an object, in which 
case the iconic representation represents it through some 
mapping of shapes (similarity between the shape of the 
representing entity and the shape of the represented entity) 
or some other characteristic feature. Or, it can be a visual 
scene in which case the scene is represented through a 
mapping from the spatial structure of the representational 
content to the spatial structure of the visual scene, and 
through mappings from the attributives (the representations 
of the features of objects in the scene) to the attributes in the 
visual scene (although it is not necessary that the mapping 
contains all of the features in the visual scene). As 
Jackendoff (1987, 181-2) explains, ‘In a geometric 
representation objects are necessarily represented in terms 
of their shapes and apparent sizes ... In a geometric 
representation multiple objects under simultaneous 
consideration are necessarily spatially related in distance 
and orientation.’ Thus, the relations between aspects in the 
representation are not arbitrary but depend on the relations 
between the aspects of the visual scene onto which they 
map; an analog representation approximates the 
representatum (Peacocke (1986).    

It is an essential characteristic of the iconic structure of 
perceptual representations that it does not support logical 
operations. Logical connectives and quantifiers cannot be 
among the analog representational content of perception, as 
they can be part of the content of propositional states. This 
can be inferred from two facts. First, that there are no 
logical contradictions in perception (illusions are not logical 
contradictions), while a proposition whose form is p & -p is 
a logical contradiction. Second, from the fact that if one 
tries to take a picture of a situation expressed by a 
disjunction, say that O1 is either to the left of O2 or to the 
right of O2, one gets a picture either of O1 being to the left 
of O2, or a picture of O1 being to the right of O2, depending 
on the actual spatial configuration. This, however, is not a 
picture that displays the disjunctive fact described above; 
one cannot analogically express the fact of the occurrence of 
a logical connective.  

Ayers (2019, 77-78) notes that pictorial representations 
convey information about what is represented ‘by exploiting 
the content of the experience of seeing it¾that is, how the 
object or scene looks from a particular point of view’. 
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According to Carey (2009), analog representations are 
iconic in that their parts represent parts of what the 
representation as a whole represents, which Fodor (2007, 
173) calls the Picture Principle, ‘if P is a picture of X, then 
parts of P are pictures of parts of X.’ Kosslyn (1994, 5) 
holds the same view about iconic or depictive 
representations. Iconic representations have a whole/part 
structure, as opposed to the compositional structure of 
symbolic representations. 

There are several problems with this proposal. Although it 
makes sense to talk about spatial parts when the 
representation itself has spatial properties (as pictures, and 
maps have), there are iconic representations that do not 
involve spatial parts properly speaking because they are not 
arrayed in actual space. This means that the Picture 
Principle cannot be a necessary condition for iconic 
representations (Beck 2019; Blachowicz 1997; Peacocke 
2019). This has repercussions for the imagery debate. The 
problem that the parts principle, as the Picture Principle is 
also called, poses for mental imagery is that according to 
Kosslyn (1994) the Principle applies to mental images, but 
mental images are quasi-pictures because they are not 
arrayed in space, as literal pictures are, and it is not clear in 
which sense one could talk of parts in non-spatial 
representations. Kosslyn’s (1994, 5) introduces the notion of 
‘functional space’, according to which the space in which 
mental images appear need not be physical but can be like 
an array in a computer that specifies spatial relations purely 
functionally. This means that the physical locations of each 
element in a spatial array are not themselves arranged into 
an array and it is only ‘in virtue of how this information is 
read and processed that it comes to function as it were 
arranged into an array’.  

Mental images need to be ‘physically instantiated in a 
way such that they can “act” or “function” like images in an 
appropriate ‘processing” environment.’ (Haugeland 1987, 
91) A representation may be iconic even if it is not arrayed 
in space and does not have spatial features, since it suffices 
that it determine a geometrical structure that maps naturally 
onto some spatial structure. The view that representations in 
perception or imagery even though not literally arrayed in 
space can be iconic representations of spatially arrayed 
properties comes from our knowledge of the topologies 
involved in perception and their inter-mappings. Recall that 
a representation is iconic if it has an inherent structure that 
maps naturally onto the structure of the represented entity. 
The iconic nature of perceptual representations is grounded 
successively in the layout of the retinal cells that maps onto 
the spatial layout of the environment, and in the orderly 
retinotopic mapping of the visual world onto the surface of 
the cortex through the retinotopic mapping of the surface of 
the cortex onto the retinal cells. The physical layout of the 
retinal cells and the other receptors higher in the hierarchy 
of the brain renders registration of information from the 
retinal image iconic. The iconic registration of the retinal 
image maps onto representational states in the brain 
rendering them in turn iconic, and both map onto to visual 
perceptual representation in experience rendering it iconic 
as well. All these mappings are grounded in the mapping of 
the topology of information registration in the retina onto 

the topology of spatial and featural structures in the 
environment and this  results in perceptual representations 
that preserve the spatial and featural structure of the 
represented visual scene. 

Perception, thus, is a primary candidate for an iconic 
scheme that satisfies the Picture Principle because 
perceptual representation is arrayed in space and, thus, is 
amenable to part/whole structural analysis. Note, however, 
that there are some limitations to what constitutes a proper 
part of an image. Not all combinations of features could be 
considered genuine parts of the image. Consider the back 
part of an object and a part of the immediate background 
and combine them. In terms of what is computationally 
relevant in perception, it is highly unlikely that this complex 
part of the image is represented by anything in perception. 
Thus, it is not true that any part of an iconic representation 
represents a part of the image that the representation 
represents; only parts that are admissible as components of 
perceptual processes are admitted. 

Some iconic representations are dense, continuous, 
homogeneous, unit fee, and come in information packages, a 
set of properties traditionally assigned to analogicity 
(analogtr). A set is dense if between any two elements in the 
set there is always a third element; the set of real numbers is 
dense but the set of natural numbers is not because between 
two consecutive natural numbers there is not a third number. 
In the brain, some neurons have continuous activation 
functions, which means that the set of the activation values 
of a neuron is dense. Consider a neuronal assembly that 
represents the color red and has continuous activation 
values. This entails that ‘red’ may be represented by a 
continuous, dense set of activation values, some subsets of 
which determine the different shades of red (deep red, bright 
red, etc.,) but others have no phenomenological cash values. 
Or, consider a mercury thermometer in which the magnitude 
of mercury represents temperature. Both the representing 
magnitude and the represented temperature vary 
continuously and are dense. 

Peacocke (1986) argues that analog magnitide 
representations are unit free (see also Jackendoff (1987)), 
while digital representations of magnitudes come in some 
unit. Dretske (1981, 73) argues that all signals are “pregnant 
with information”; they carry many messages when they 
carry any. A picture of a red cup not only carries 
information about its color, but also about its shape, etc.; 
one cannot see a red cup without seeing it as having some 
specific shape, etc. By contrast, you can form the belief that 
a cup is red without forming beliefs about its shape.  

Blachowicz (1997) examines the properties that analogtr 
representations are supposed to have and concludes that 
many analog representations exhibit all these properties (see 
also Beck 2019), but, excepting, ‘relational identity’ they 
are not necessary to being an analog representation, which 
means that if a representational scheme satisfies relational 
identity should be considered to be analog despite the fact 
that it is not continuous or dense. Reference to a similar 
condition for analog representations is found in Beck (2019, 
331-333), according to whom, a representation is analog if it 
mirrors (that is, it is isomorphic to, or bears some structure-
preserving relation toward) what it represents; similarities 
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among the elements in the represented domain are mirrored 
by similarities among the elements in the representational 
scheme.  

Maley (2011, 122) offers a covariational account in which 
a representational medium R of a domain Q is analog just in 
case there is some property P of R such that the quantity of 
P determines Q and as Q increases or decreases by an 
amount d, P increases or decreases as a monotonic function 
of Q + d or Q-d. This demand is further developed by 
Kulvicki (2015). 

Kulvicki argues that analog representations are those that 
bear a certain mirroring relationship to the domain they 
represent, a requirement that may be satisfied by non-dense 
representational schemes. Analog representations require 
structure preserving syntactic-semantic links (syntactic 
refers to the representing medium, while semantic refers to 
the represented domain) that result in representations with 
vertically articulated content. A representation has a 
vertically articulated content when it represents objects as 
being P but also represents them as being Q, where Q is an  
abstraction from P. A mercury thermometer is such a 
representation because it represents temperatures and when 
it designates a certain temperature T1 through the 
measurement of some measured height of the mercury, it 
also represents indefinitely many abstractions from T1, that 
is, other temperatures that correspond to heights that are 
very close to the measured type that, as such cannot be 
discriminated from that height.  

In these accounts, the traditional properties assigned to 
analog representations are dropped and analogicity is 
defined in terms of an appropriate mapping of the 
representation onto the represented domain that captures 
semantical properties and relations in the represented 
domain. Thus, the defining character of analogicity is the 
iconic character of the representation. Let us call this the 
revised view of analogicity (analogr). Discrete 
representational systems could count as analogr. I will not 
delve on whether perception, which is iconic, has some of 
other properties of analogtr because whether cognitive states 
could affect perceptual processing hinges on the iconic 
nature of perceptual representations. 

 
Representations in Visual Perception, VSTM 

and LTM 
Research supports the distinction between dense, purely 
iconic perceptual representations, on the one hand, and the 
less dense hybrid representations in VSTM (Visual sort term 
memory) and VLTM (Visual long term memory) (should 
one espouse the view that these representations are not 
purely symbolic and may have an iconic component), or the 
purely symbolic representations used in VSTM and 
VLTM supporting conceptual thought, on the other hand. 
Since attention is usually involved in storing information in 
VSTM and VLTM (‘usually’ because information can get 
into LTM in the absence of attention and on certain 
occasions bypassing working memory), the attentional 
modulation of the output of early vision restricts not only 
the number of objects that can be held in memory, but also 
impoverishes the information about those objects that is 

stored in memory. It is thought that iconic representations 
are high-density representations in the order of 100,000 bits 
of information (Itti & Baldi, 2005), while the 
representations in VSTM have much lower density, about 
30-40 bits of information (Vogel et al. 2001). 

Coding of purely iconic representations in early vision 
is done through basis functions. These representations are 
modal and represent by means of dense basis functions 
that work at the early perceptual levels. A color, for 
instance, is represented by a vector or a pattern of 
activation values (scalars that represent the relative 
activity of red, green, and blue) across columns of neurons 
that distributively represent colors. The basis functions in 
early vision are dense in the sense that the relevant 
neuronal activations that realize the representations take 
continuous values. Thus, the states in early vision are 
represented by neural firing rates that vary continuously.  In 
this sense, the representations in early vision are analog in 
the traditional sense, they are homogeneous, and satisfy the 
Picture Principle. 

Not all neurons in the brain have continuous activation 
functions. Some neurons fire a fixed amount once they 
reach a threshold or do not fire at all. In this case, the 
properties of objects in the visual scene could be represented 
either by the total number of neurons firing above a certain 
threshold (Beck 2019, 333), or by the firing patterns of these 
neurons. Either way, both the medium and the 
representational format are discrete. The representations, 
thus, are not analogtr, but they are still iconic since they 
preserve the spatial structure of the perceived visual scene 
and since the elements in the representation map onto 
elements in the represented scene. In addition, the coding in 
early vision, even if non-dense has a higher-density than the 
coding in VSTM or VLTM. Moreover, the iconic, non-
continuous representations in early vision are purely iconic 
and do not contain any symbols. One could say that in this 
case the representations are near-continuous. 

A few words about basis functions are in order. In 
mathematics, a basis function is an element of a particular 
basis for a function space. Every continuous function in the 
function space can be represented as a linear combination of 
basis functions, just as every vector in a vector space can be 
represented as a linear combination of basis vectors. So, in 
the case of color representations, where colors constitute the 
function space, the activities of neurons that represent red, 
green, and blue are the basis functions and every color can 
be represented by a combination of the activation values 
across neuronal assemblies that distributively represent red, 
green, and blue, that is, in terms of the relevant basis 
functions. Note that in this case, the components in the brain 
that realize the basis functions are modeled as neurons in the 
relevant neuronal assemblies and, given the fact that 
representations in the brain are distributed, each neuron can 
be a component of different basis function (Pouget and 
Snyder 2000). The idea is that by taking a weighting sum of 
three basis functions of the visual signals, one obtains the 
color (hue, saturation, and lightness) at a particular location 
in a visual scene.  

Let me elaborate. Color processing starts with three kinds 
of cone cells/receptors in the retina that respond to short (S), 
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medium (M), and long (L) wavelengths (the proportions of 
these three kinds of cells in the retina is L:M:S/ 10:5:1). The 
three types of cells have Bell-like overlapping response 
curves, or spectral sensitivities, with peaks at 440, 530 and 
560nm respectively (De Valois & De Valois 1993), and are 
usually called the blue, green, and red cones. Although this 
is misleading, since the peak of the third type of cones is at 
560 nm but the red color spectrum is between 600 and 
700nm, I will keep this nomination. These three cone 
spectral sensitivities can be thought of as the three basis 
functions out of which all other spectra could be 
constructed, which entails that each color can be described 
by three numbers, the values across the three basis functions 
to which each color corresponds (I will explain next what 
“corresponds” means). This, in turn, signifies that each color 
corresponds to a vector in the three-dimensional space 
defined by the three basis functions.  

Let N be the number of all possible spectral signals. These 
signals define a N-dimensional space and every 
environmental spectral signal is N-dimensional. As a given 
signal projects onto the retina it is filtered by the three basis 
functions (that is, the three types of spectral sensitivities of 
the retinal receptors), in the sense that the incoming signal 
activates these cells in proportion to its spectral signature 
and these cells, in turn, output their signal to LGN and V1 
cells. So, all the information in the incoming signal is 
filtered by the responses of the three types of cells in the 
retina and propagates further in the visual cortex. For each 
incoming signal, each type of cell responds with a specific 
output, a number corresponding to a wavelength in its 
sensitivity curve, and the three numbers (since there are 
three cone types/basis functions) encode in the retina the 
incoming signal. This can be thought of as a projection of 
the incoming signal, through the three basis functions, onto 
a three-dimensional subspace. Thus, if we measure the 
responses of the three different spectral sensitivity 
curves/basis functions, we are measuring the projection of 
the N-dimensional input vector onto each one of the 
dimensions of the three-dimensional space defined by the 
three basis functions. (This is the sense of “corresponds that 
I used in the previous paragraph.) The three coordinate 
values (the triplet of cone responses) defines a specific 
coordinate in the three-dimensional space, which is the 
projection in three-dimensional space of the N-dimensional 
input signal. It follows that any color system can be defined 
by simply specifying a set of three linearly independent 
basis functions and record the projection of any color in the 
system onto the thus-defined three-dimensional space as it is 
filtered upon its projection onto the retina by the basis 
functions.1  

It is important to point out that through the basis 
functions, N-dimensional environmental inputs are 
projected in a systematic way onto brain states, in such a 
way that despite the reduction in the dimensionality of the 
signal, from N dimensions to the three dimensions of the 
filtering basis functions, the structure of the represented 
domain, the structure of the color space for instance, is 
preserved in the representing states since similarities in the 
represented domain are preserved in the representing 
medium; similarities in the represented domain are 

translated to closeness in the representing medium so that 
the representations of similar input signals form clusters, 
which in terms of experiential content correspond to 
phenomenal color spaces. Since a representation is iconic if 
it has an inherent structure that maps naturally onto the 
structure of the represented entity so that similarities among 
the elements in the represented domain are mirrored by 
similarities among the elements in the representational 
scheme,  the basis functions provide a means by which the 
brain can built iconic representations of some environmental 
structures. Moreover, as we shall see later on, despite the 
reduction in dimensionality owing to the projection onto the 
retina, all the information in the input is retained through the 
Garbor functions performed by V1 cells.  

VSTM coding is done by means of basis functions as 
well, but these functions are sparser since the relevant 
activations do not take continuous or near continuous, but 
discrete values. VSTM codes of colors, for example, 
concern categories like ‘red’, ‘light’ etc., but lacking a 
dense structure they do not encode the fine color 
information regarding hues, intensities, etc., that is available 
to low-level color channels. Thus, information stored in 
VSTM does not allow the fine discriminations made 
available via low-level color channels and the 
representations in visual areas differ from the 
representations stored in VSTM.  

It is debatable whether the representations in VLTM 
function as descriptors that code in a symbolic all or nothing 
manner, or by means of sparse basis functions of the short 
used in VSTM. VLTM cannot store information in a richer 
format than that of VSTM, although it can store more 
information. Symbols/concepts are stored in LTM. Concepts 
are in a sense on-off switches, the ‘on’ meaning that a token 
belongs to a certain type (concept), and the ‘off’ meaning 
that the token does not belong to that type. It is, therefore, 
possible that representations in LTM function as descriptors.  

The role of representations in LTM as concepts is 
compatible with the possibility that these representations 
function by means of sparse basis functions. If VLTM store 
information by means of basis functions, the information 
stored may be described as symbolic in the sense that the 
basis functions concern types of visual object-features 
that form a discrete set of values, as opposed to the 
continuum of values of the basis function used in iconic 
information. The representations stored in memory, 
apparently owing to attentional filtering, do not contain 
information about, say, determinate hues, but only 
information about the category of the color (bright red). 
By being symbolic, the information stored in VLTM 
representations enables categorization since the 
representations abstract away much of the detailed iconic 
information and allow different tokens that differ in 
various features to be subsumed under the same type.  

Could VLTM representations be rich albeit less rich than 
iconic perceptual representations, and in what sense? Since 
it is debatable whether VLTM representations function as 
descriptors that code in an all or nothing manner, or by 
means of sparse basis functions, if the latter they may 
encode rich visual information from a visual scene 
perceived in the past and their role exceeds their function as 
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descriptors. Representations in VLTM could store 
information iconically. To shed light on this problem, let us 
examine the research conducted by Hollingworth et al.  

Hollingworth and Henderson’s (2002) research on the role 
of LTM in retaining information from objects attended in 
after attention is withdrawn provides evidence that 
performance in online change detection and discrimination 
tasks is mainly supported by the maintenance of visual 
object representations stored in LTM during the online 
perceptual processing of the scene, rather than in VSTM. 
This conclusion is further reinforced by Hollingworth et al. 
(2001) who found that online change detection performance 
is strongly influenced by the semantic consistency between 
that target object and the scene in which it appeared, a 
variable which is known to influence the representation of 
an object in LTM but not in VSTM.  

This research supports the following. First, when attention 
is oriented to an object, in addition to low-level perceptual 
processing, visual processing leads to the construction of 
representations at higher levels of analysis. These may 
include a visual description of the attended object abstracted 
from low-level sensory properties, and conceptual 
representations of object identity and meaning. Higher-level 
visual representations can code detailed information about 
the visual form of an object, specific to the viewpoint at 
which the object was observed. Second, these abstracted 
representations are indexed to a position in a map coding the 
spatial layout of the scene forming an object file that 
preserves abstracted visual representations rather than 
sensory information and supports the short-term retention of 
conceptual codes. Third, processing of abstracted visual and 
conceptual representations in VSTM and the indexing of 
these codes to a particular spatial position leads to their 
consolidation in LTM. LTM codes for objects are likewise 
indexed to the spatial position in the scene map from which 
the object information was encoded, forming LTM object 
files. Fourth, when attention is withdrawn from an object, 
VSTM representations decay rapidly leaving only the 
spatially indexed, LTM object files that are relatively stable. 
The fact that changes to objects on the saccade away from 
that object are often detected immediately (Hollingworth et 
al. 2001) suggests that visual object representations can be 
retained in VSTM at least briefly after attention is 
withdrawn from an object. Fifth, the retrieval from LTM of 
higher-level visual codes specific to the viewed orientation 
of a previously attended object accounts for the ability to 
detect token and rotation changes and to perform accurately 
on orientation-discrimination tests. 

Hollingworth (2004) provides strong evidence that the 
online representation of previously attended objects is 
supported by the same form of representation supporting 
long-term object memory. These data provide support for 
the visual memory theory of scene representation, according 
to which, as the eyes and attention are oriented from object-
to-object within a scene, higher-level visual representations 
of attended objects are activated, are maintained briefly in 
VSTM, and are consolidated into LTM. VSTM 
representation is soon replaced as attention moves on to 
other objects, but higher-level visual representations of 

previously attended objects accumulate in LTM, forming a 
robust and relatively detailed representation of the scene. 

There is dissociation between VSTM and VLTM and 
sensory persistence (iconic memory) in terms of format and 
content (abstracted vs. sensory–pictorial), capacity (limited 
vs. large capacity), and time course (relatively robust vs. 
fleeting). On another occasion, Hollingworth remarks that 
his research provides evidence of representations in LTM 
with similar format and content as those in online 
perception. There is also a strong conceptual involvement, 
including semantic associations, in VLTM. Hollingworth’s 
study demonstrated that visual memory is sensitive to 
semantic associations, task demands, and viewer strategies.  

Hollingworth and colleagues’ research is not the only 
ones to suggest a picture of VSTM according to which 
VLTM stores an abundance of detail of visual scenes 
encountered in the past. Even though current models of 
visual perception posit a hierarchy of processing stages that 
reach more and more abstract representations in higher-level 
cortical areas in the brain, many studies in addition to the 
ones discussed in the previous paragraphs suggest that 
visual processing stages in the brain do not necessarily 
discard visual details by  showing that participants 
successfully maintained detailed representations of 
thousands of images (Brady et al. 2008). It seems, thus, that 
VLTM  representations can contain not only gist 
information, as is traditionally thought, but also details 
sufficient to discriminate between exemplars and active 
visual states. ‘Whereas in everyday life we may often fail to 
encode the details of objects or scenes, our results suggest 
that under conditions where we attempt to encode such 
details, we are capable of succeeding.’ (Brady et al. 2008, 
14328). To  be able to maintain such featural details, the  
representations of objects  and their features in VLTM 
might be stored throughout the entire hierarchy of the visual 
processing stream, including early visual areas that are 
reactivated on demand by means of top-down processes 
(Ahissar and Hochstein 2004; Wheeler at al. 2000).   

If VLTM stores information not in an all or nothing 
descriptive manner but by means of basis functions, it is 
possible that the representations in VLTM have in iconic 
format, which is more abstract than the iconic format of 
visual representations. To be iconic, they have to satisfy 
only the condition that their structure capture semantical 
properties and relations in the represented domain. Note, 
however, that owing to the presence of conceptual elements, 
the format of VLTM representations cannot be purely 
iconic. It follows that the VLTM representations have a 
hybrid format; symbolic, owing to the conceptual 
ingredient, and iconic, owing to the perceptual ingredient. 
Since, unlike perception, LTM also stores cognitive 
information in propositional form, it is likely that the 
representations in VLTM are cast in a propositional form 
that contains iconic elements, which means that concepts 
may take advantage of the iconic information.  
 
Early Vision/Cognition Interaction: A Sketch 
The cornerstone of the view that cognitive states cannot 

affect directly perceptual states is that the symbolic 
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cognitive states do not have the requisite structure to 
modulate iconic perceptual states. We saw that cognitive 
states in visual memory may be hybrid states that have both 
conceptual components and iconic components. Let us 
return to Delk and Fillenbaum (1965). The participants, 
recognizing the paper cut surface as a heart, activate in 
memory their knowledge about hearts, among which the 
most relevant to the task at hand is the belief that hearts 
typically have a bright red color. This representation is 
effectuated by means of a sparse function. Assume that in 
VLTM the typical red color of a heart is represented by a 
triplet of values coding for ‘deep’, ‘bright’, and ‘red’, <a, 
b, c>, which is a hybrid symbolic and iconic 
representation. This symbolic/conceptual representation 
maps onto the relevant perceptual space not simply in the 
sense that the color is in a certain color-range, but also in 
the sense that owing to its iconic elements this 
representation maps, partly, onto a region in the 
phenomenal similarity color space.  

Representations in memory have an iconic component and 
partition the phenomenal color space in a certain way and 
the components of the sparse function that represents the 
belief map naturally onto this space. The symbolic-
phenomenal space mapping is natural since it is the same 
type of functions that underlies both iconic representations 
of colors in pure perception and hybrid representations of 
colors in VSTM, and since the concepts in the VSTM are 
formed by processes that are partly guided by the stimulus. 
I t  is the nature of the stimulus that elicits the relevant 
concept and is not arbitrary which concept will be activated. 

The iconic component of memory color representations 
endows them with structure that maps onto the phenomenal 
color space through their mutual mappings onto 
environmental colors. This structure allows, in turn, 
memory representations to modulate perceptual processing 
of colors, through a mechanism currently investigated. 
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