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Abstract 

Participants in Goldwater et al. (2018) reported using either 

feature- or relation-based strategy during a series of category 

learning tasks. A computational modeling study was conducted 

to investigate whether performance on Experiments 1 and 2 of 

Goldwater et al. (2018) might be explained by the assumption 

that participants used either feature- or relation-based 

representational encoding during learning. Human 

participants’ and model performance are compared and 

implications are discussed. 
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There is an ongoing debate on whether featural and relational 

categorisation rely on the same cognitive mechanisms. 

Membership in a featural category is assessed via similarities 

of objects’ intrinsic features, while membership in a 

relational category is evaluated based on relations between 

parts of the stimulus. Some findings suggest that feature-

based categorisation is fundamentally different from that 

based on relations (e.g., Davis, Goldwater, & Giron, 2017; 

Jung & Hummel, 2015), while other results demonstrate 

similarities in the two kinds of categorisation (e.g., Corral, 

Kurtz, & Jones. 2018; Higgins & Ross, 2011). 

Goldwater et al. (2018) aimed to investigate this 

controversy by exploring different strategies that human 

participants might employ during category learning. The 

findings of their Experiments 1 and 2 suggest that during 

categorisation tasks participants differed on type of learning 

strategy. Some participants utilised a feature-based strategy 

while others applied a relation-based strategy. 

One of the limitations of the study is the fact that the 

learning strategy is assessed with self-reports. This approach 

involves a higher-level metacognitive assessment of the 

strategies involved in task completion; an approach which 

may not properly identify the underlying cognitive 

mechanisms. We sought to further explore this issue using a 

computational model of relational reasoning (DORA; 

Doumas, Hummel, & Sandhofer, 2008).  

The goal of the current study was to investigate whether 

feature- and relation-based strategies might be the result of 

engaging different representational encodings—by encoding 

each stimulus purely with its features or with a relational 

structure. In addition, the current study aimed to explore 

whether between- and within-category comparisons affect 

the model’s performance on the categorisation task 

differently while either feature- or relation-based encodings 

are engaged. DORA (as its predecessor LISA) is one of a few 

models that can simultaneously represent featural and 

symbolic relational representations within the same 

framework. This is the main reason why this framework was 

employed to explore the difference between featural and 

relational categorisation. 

Method 

Category Learning Task 

Stimuli for the simulations were adapted from Goldwater et 

al. (2018) and comprised two artificial categories. Each 

stimulus contained three lines formed by coloured squares—

red, green, blue, and yellow. The distribution of colours 

served as the featural aspect of the stimulus, with more reds 

and greens probabilistically defining membership of one 

category, Snarg, and more blues and yellows defining another 

category, Blicket. The relational aspect of the stimuli, the 

relative line lengths, was deterministic of the category 

membership such that monotonically decreasing or 

increasing line lengths defined snargs and non-monotonic 

relations represented blickets (see Figure 1). 

 

 

Figure 1: a) An example of a snarg; b) An example of a 

blicket; adopted from Goldwater et al. (2018).  

The categorisation task consisted of a learning phase with 

feedback and a testing phase without feedback. During the 

learning phase the stimuli from different categories were 

presented one at a time. Upon classification of each stimulus 

the correct/incorrect feedback was given.  

The testing phase comprised baseline, feature, relation, and 

cross-mapped trials. During the baseline test trial, the stimuli 

a b 
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were presented in the same manner as in the learning phase. 

For the feature test trial only featural aspects of the stimuli, 

colour distributions, were preserved, while the relational 

information, relative line lengths, was removed (by 

generating lines of equal length). During the relation test trial 

the colours were equally distributed, making category 

membership based on features impossible to discern, while 

the relative line lengths were preserved. For the cross-

mapped test trial the colour distributions referred to one 

category while the relative line lengths referred to the other 

(see Goldwater et al., 2018, for full details of the stimuli and 

the learning and testing phases).  

A Symbolic-Connectionist Model of Relational 

Reasoning  

To explore the findings of Goldwater et al. (2018) we used 

DORA (Discovery Of Relations by Analogy; Doumas, 

Hummel, & Sandhofer, 2008), a symbolic-connectionist 

model previously shown to account for various learning and 

representation development phenomena. As input DORA 

takes objects represented in a distributed fashion as a 

collection of features and learns single-place predicates and 

multi-place relations (Doumas et al., 2008; Doumas & 

Martin, 2019). Ultimately, the model learns a relational 

schema which does not rely on features and may be used for 

analogical reasoning and generalisation (Doumas & 

Hummel, 2005; Doumas & Hummel, 2010; Hummel & 

Holyoak, 1997; Hummel & Holyoak, 2003).  

DORA consists of an active memory (AM), the stimuli in 

the focus of DORA’s “attention”, and long-term memory 

storage (LTM), where all the information “seen” previously 

is stored together with all the inferences about it. For the 

purposes of categorisation task in the current study DORA’s 

retrieval, mapping, and schematisation routines were 

employed. The retrieval routine retrieves objects and 

relational structures from LTM based on the similarity of 

those representations to representations in AM. The mapping 

routine aligns objects and relational structures based on their 

similarities and roles within the relational structure 

supporting analogical inference. The schematisation routine 

refines the learned relational schemas, identifying common 

roles and relations they share and dismisses unshared 

features. Please see Doumas et al. (2008) for the more 

detailed description as well as for the model parameter 

values.  

Following the interpretation of Goldwater and colleagues, 

one of the assumptions in the current study was that human 

participants’ learning strategies differed in terms of using 

features versus relations and therefore could be captured by 

the difference in encodings. To simulate human participants 

employing featural and relational strategies on a category 

learning task, DORA was run with two different types of 

encodings. DORA with the featural type of encoding was 

limited to featural representation of objects and was 

prevented from creating a relational structure. Each stimulus 

was encoded as three lines with colour distributions serving 

as features. For instance, an example of a snarg in Figure 1a 

would be defined through featural encoding as follows: 
 

line1: b1, y1, g1, r1, r2, g2, g3, g4, r3, len9 

line2: g5, g6, r4, y2, r5, b2, r6, r7, y3, g7, g8, r8, len12 

line3: y4, r9, g9, g10, g11, g12, r10, r11, r12, b3, g13, r13, g14, 

r14, r15, g15, len16, 

where r stands for red square, b for blue, g for green, y for yellow, 

len for length. 
 

Categorisation was performed with an exemplar approach. 

While various approaches to categorisation exist (see Pothos 

& Wills, 2011) the exemplar approach was chosen for two 

reason. First, it is in line with Goldwater et al.’s strategy in 

Experiment 2 of using the word-learning task to differentiate 

rule-learners from learners attempting to memorize 

exemplars. Second, the exemplar approach allowed us to 

employ DORA as a naïve category learner for the sake of 

simplicity—to investigate simplest possible categorisation 

mechanisms that do not involve learning.  

The model was presented with an exemplar which was first 

placed in AM. DORA then attempted to retrieve one of the 

exemplars already stored in LTM (initially there were no 

exemplars in LTM) based on the featural similarity. Next, 

DORA attempted to map the current exemplar to any 

retrieved representations. If a mapping was discovered, then 

DORA categorised the current exemplar as the same category 

as the mapped exemplar. DORA then received feedback. The 

labeled exemplar entered LTM and could be retrieved in 

future categorisation trials.   

With a relational encoding a stimulus was represented with 

a relational structure encoded as a ternary proposition (see 

Figure 2).  

 

 

Figure 2: A ternary proposition which encodes the relational 

structure of a snarg shown in Figure 1a. Features are 

represented schematically by the lower-level circles. 

A ternary proposition was utilised instead of four binary 

propositions since one proposition constitutes smaller 

cognitive load than four propositions. An example of four 

propositions in this case could be shorter(line1, line2), 

shorter(line2, line3), left-of(line1, line2), and left-of(line2, 

line3). The use of ternary propositions is supported by 

empirical evidence demonstrating human capability to parse 

ternary relations as early as 5 years of age (Halford, 2014; 

Morrison et al., 2011).  

A relational representation included three objects—three 

lines of one exemplar—and their roles in the relational 

structure which were assigned based on the relative line 

length and the position of the line in a stimulus (see Figure 

2).  
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Importantly, the goal of the current study was to explore 

category learning rather than concept learning (e.g., 

Markman & Ross, 2003). A relational category is defined by 

a relational concept (e.g., the relational category of items of 

monotonically increasing size is defined by the concept of 

increasing size). As such, learning a relational category 

requires having the necessary relational concept. We assume 

that college students (human participants) are already 

familiar with concepts like increasing size and come into the 

study with these representations. During categorisation task 

what these participants are likely learning is to apply a known 

concept in a novel context. As such, we started DORA with 

representations of relations such as larger and next-to. For the 

current simulations the relations were hand-coded as learning 

these relations from examples has been previously simulated 

(e.g., Doumas et al., 2008). 

 

Simulation 1 In the first simulation we simulated Experiment 

1 from Goldwater et al. (2018). During categorisation task, 

DORA was run with either featural or relational encoding 

described above. The motivation for the original empirical 

experiment was to establish a proof of concept of relational 

versus featural strategy in category learning. The aim of 

Simulation 1 was to compare DORA’s accuracy to human 

performance. If DORA’s performance is comparable to that 

of human participants, this would offer a support to the notion 

that featural learners and rule-learners differ on the type of 

encoding engaged during category learning. We ran 50 

feature-based simulations and 50 relation-based simulations.  

 

Simulation 2 The second simulation simulated Experiment 2 

of Goldwater et al. (2018). In Experiment 2 human 

participants were trained in either a blocking or an 

interleaving condition. These conditions focus on the 

sequence of stimuli presentation—how often stimuli from the 

same category are presented on the consequent trials. The 

chance of a stimulus from the same category being presented 

on the consequent trial is 75% in the blocking condition and 

25% in the interleaving condition. We simulated these 

training regimes in DORA. 

 

Simulation 3 In Experiment 2 accuracy of human 

participants on relation test trial was higher after blocked 

training compared to performance on relation test trial after 

interleaved training. Since DORA did not replicate this 

difference during Simulation 2, the third simulation 

introduced a recency bias in which DORA favoured the most 

recent exemplar for comparison with the current exemplar. 

This bias was instantiated in DORA as the ability to compare 

the current with the most recent exemplar—a direct 

comparison tactic previously shown to enhance category 

learning (Sandhofer & Doumas, 2008). The recency bias 

allowed us a preliminary investigation into whether the direct 

comparison is behind the relational advantage in humans 

after blocked training. While being trained in blocked and 

interleaved regimes with the recency bias, DORA compared 

the current exemplar with the most recent exemplar on the 

subject of category membership via mapping routine. Every 

time the direct comparison between two consecutive 

exemplars was relational and the classification was 

performed correctly, the model constructed a relational 

schema (see Doumas et al. 2008 for details of mapping and 

relational schematisation routines). The probability of the 

exemplar encoding to be relational on every trial was set at 

.5. This represented the idea that while humans do have 

relational representations they might not always use them 

during category learning. 

Results 

Simulation 1 Results and Discussion 

During the learning and testing phases of Simulation 1 

DORA demonstrated trends similar to those of human 

participants in Experiment 1 of Goldwater et al. (2018). 

During learning phase, as well as on baseline test trials, 

accuracy of both feature-based and relation-based strategies 

in human participants and of DORA running with feature-

based and relation-based encodings were above chance. The 

relational strategy in humans and relational encoding in 

DORA produced slightly slower learning (see Figure 3).  

Please note, in all figures, “feature-based strategy” and 

“feature-based encoding” are referred to as “exemplar”, and 

“relation-based strategy” and “relation-based encoding” as 

“rule”). 

 

 

Figure 3: Learning phase and baseline test trials. Accuracy 

of exemplar versus rule approach in human participants in 

Experiment 1 and DORA’s featural versus relational type of 

encoding in Simulation 1. 

As noted above, on the feature test trials, stimuli were 

stripped of relational information by making all three lines in 

a stimulus of equal length. As expected, the accuracy of 

relation-based human participants was at chance, while those 

employing a feature-based strategy demonstrated high 

accuracy. Similarly, DORA run with relation-based 
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encodings on feature test trial performed close to chance, 

while feature-based encodings on the same kind of trial 

yielded high accuracy (Figure 4). This trend was reversed for 

the relation test trials in which distributions of four colours 

were equal. Feature-based human participants were near 

chance; by contrast, rule-learners performed with high 

accuracy. DORA demonstrated similar results, with featural 

encodings yielding near chance accuracy and relational 

encodings producing high accuracy (see Figure 4). 

 

 

Figure 4: Feature and relation test trials. Accuracy of 

exemplar versus rule approach in human participants in 

Experiment 1 and DORA featural versus relational type of 

encoding in Simulation 1. 

During cross-mapped test trials, the features and relations 

pointed at complementary categories. That is, on cross-

mapped trials snargs had the prevalence of blue and yellow 

squares and blickets had the prevalence of reds and greens, 

while the opposite was true during training. The relations 

between lengths of the lines were preserved, with 

monotonically increasing or decreasing lines still defining 

snargs and non-monotonic relation defining blickets. 

As expected, feature-based learners categorised using 

features, and thus performed systematically below chance 

when accuracy was based on the relational rule. Interestingly, 

the rule-based learners were not as accurate on cross-

mapping trial as on baseline or relation trials, even though the 

rule did not change (Figure 5). DORA showed the same result 

with relational encoding. In DORA, the reduced accuracy 

was a product of the fact that relational representations 

included featural information, and categorisation was the 

result of retrieval from memory based on featural as well as 

relational similarity. Thus, featural information biased 

retrieval of category exemplars based on features rather than 

relational information. This result suggests that rule-learners 

might not be completely biased towards relational 

information, as it is often conceptualized in the literature, and 

might be lulled by featural similarity.  

In short, Simulation 1 supported the notion that the 

differences between the strategies that human participants 

employ on the category learning task might be due to the 

differences in the types of stimulus encoding engaged during 

the categorisation task.  

 

 

Figure 5: Cross-mapped test trials. Accuracy of exemplar 

versus rule approach in human participants in Experiment 1 

and DORA’s featural versus relational type of encoding in 

Simulation 1. 

Simulation 2 Results and Discussion  

In Goldwater et al.’s (2018) Experiment 2, rule learners 

trained with interleaving stimuli performed just as well as 

feature learners on feature test trials. That is, participants who  

reported using relational rules did not have trouble correctly 

categorising exemplars wherein the relational information 

was removed (Figure 6). Rule-learners trained with blocked 

trials, by contrast, did show the expected decrease in accuracy 

when relational information was removed (Figure 6). DORA 

showed the expected decrease in accuracy on feature trials 

when using relational encodings for both interleaved and 

blocked training. This result might suggest that 

differentiating between learning strategies with a self-report 

measure may not prove accurate.  

On relation test trial DORA performed at chance when 

using featural encodings, and much better when using 

relational encodings (Figure 7). This result held after both 

types of training—with interleaved and blocked stimuli. The 

human participants showed this trend only with blocked 

training (Figure 7). That is, while feature learners performed 

close to chance on relation test trials with both interleaved 

and blocked training, rule learners performed well on relation 

test trials only with blocked training.  

The same discrepancy between DORA and human 

participants was observed on the cross-mapped test trials 

(Figure 8). Both feature learners and DORA using featural 

encodings showed accuracy lower than chance—meaning 

that the opposite category was identified in most cases—
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given both interleaved and blocked training. By contrast, 

humans who reported using a relation-based strategy 

performed below chance (i.e., used a the featural rule) when 

trained with interleaved stimuli, and at chance when trained 

with blocked stimuli. DORA did not show this trend, and 

rather showed feature-based reasoning (below chance 

accuracy) when using featural encodings, and relation-based 

reasoning (above chance accuracy) when using relational 

encodings.  

 

 

Figure 6: Feature test trials. Accuracy of exemplar versus 

rule approach in human participants in Experiment 2 and 

DORA’s featural versus relational type of encoding in 

Simulation 2. 

Goldwater et al. (2018) argued that the blocked training 

should benefit performance of the rule-based learners, while 

the interleaved training should enhance accuracy of feature-

based learners. This prediction follows current thinking in 

analogy literature, i.e., relational category learning is 

promoted by analogical comparison (Christie & Gentner, 

2010; Doumas et al., 2008), and analogy-making is easier  

when the compared exemplars are indeed from the same 

category as there are more similarities (relational or featural) 

to align.  

Blocking versus interleaving affected neither accuracy 

during the learning phase, nor the baseline test trial 

performance for both, human participants and DORA. 

However, compared to the interleaving condition, human 

participants in blocking condition demonstrated higher 

accuracy on relation test trial. Since featural information was 

inaccessible, rule-learners performed better than exemplar-

learners. It is interesting, however, that on the relation test 

trial in the interleaving condition human participants who 

reported rule-based learning strategy performed at chance. It 

was shown in literature that alternating between categories 

interferes with learning while presenting categories 

consequently enhances it (e.g., Sandhofer & Doumas, 2008). 

This pattern was not replicated in DORA and the model did 

not exhibit different behaviour on relation test trial after  

 
 

Figure 7: Relation test trials in blocking and interleaving 

conditions. Accuracy of exemplar versus rule approach in 

human participants in Experiment 2 and DORA’s featural 

versus relational type of encoding in Simulation 2. 

 

blocked versus interleaved training. One possible explanation 

is that the model in Simulation 2 was insensitive to the 

ordering of the exemplars. The goal of Simulation 3 was to 

address this limitation and to provide guidelines for future 

research. 

 

 

Figure 8: Cross-mapped test trials in blocking and 

interleaving conditions. Accuracy of exemplar- versus rule 

approach in human participants in Experiment 2 and 

DORA’s featural versus relational type of encoding in 

Simulation 2. 

Simulation 3 Results and Discussion  

During Simulation 3 we implemented a recency bias in the 

model. DORA performs schematisation whenever it maps 

relational propositions. We instantiated the feedback in the 
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study by allowing the model to store schemas only after the 

classification was performed correctly. This resulted in 

different number of relational schemas after different training 

regimes. The blocked learning regime produced 32 relational 

schemas on average, while interleaved regime produced an 

average of 10 relational schemas after 20 simulations. These 

are reasonable results given that the probability of two 

consecutive exemplars being from the same category during 

blocked training is .75, and only .25 during interleaved 

training. Thus, after blocked training, the model has three 

times more schemas. These results suggest that indeed, as 

speculated by Goldwater et al. (2018), the advantage of 

blocked training was the invitation to compare more easily 

alignable items (i.e., items from the same category). By 

comparing items from the same category, assuming the 

model had noticed the correct relations, it could learn a 

schema defining a particular category. The resulting schemas 

were essentially variabalised representations of the key 

relational concept, and so made excellent representations of 

the relational category. Our simulations support the idea that 

a possible explanation for human participants’ accuracy on 

relation test trial in blocking versus interleaving conditions is 

the generation of relational schemas defining the key 

relational category. 

General Discussion 

One goal of the computational simulations comprising this 

study was to investigate whether differences between feature-

based and relation-based strategies employed by human 

participants in category learning task might be explained by 

the differences in the stimulus representational encoding 

mechanisms. Another goal was to test whether stimulus 

presentation sequence (blocking versus interleaving) affects 

performance differently when these types of encoding are 

engaged. We used DORA, a symbolic-connectionist model 

of relational learning and reasoning, to simulate performance 

on Experiments 1 and 2 of Goldwater et al. (2018) in which 

featural versus relational encodings were used to represent 

category exemplars.  

Solely adjusting the representational encodings used by the 

model produced some striking similarities to human 

participants in Experiments 1 and 2 of Goldwater et al. (2018) 

in both accuracy and general trends. The results suggest that 

the differences between the exemplar and rule-based 

strategies employed by human participants during the 

learning stage might be due to the differences in the type of 

encoding engaged in the category learning task. 

The results of human participants and DORA diverged in 

interesting ways in simulating Experiment 2. DORA, a model 

whose retrieval and mapping routines depend on analogical 

alignment, did not suffer any accuracy impairment given 

interleaved training compared to blocked training in 

Simulation 2. This outcome was unsurprising given that the 

difference between blocked and interleaved training is 

hypothesised to arise because blocked (as opposed to 

interleaved) training is said to promote comparison (e.g., 

Doumas & Hummel, 2013; Kurtz, Boukrina, & Gentner, 

2013; Sandhofer & Doumas, 2008), which in turn promotes 

relation learning. The results of Simulation 3 suggest that 

direct comparison might influence the frequency of relational 

schemas construction which in turn could be the mechanism 

behind the relational category learning. It has been 

demonstrated in analogy research that comparison facilitates 

learning relational schemas (e.g., Doumas & Hummel, 2013; 

Gick & Holyoak, 1983; Hummel & Holyoak, 1997; Jamrozik 

& Gentner, 2013; Kurtz et al., 2013). Future simulations 

should explore whether the representational structure of 

relational category corresponds to the relational schema in 

analogy research or whether relational representations of 

relational categories are governed by the same mechanisms 

as featural representations.  

Finally, consider the drop in accuracy for the rule-based 

learners and relation-based DORA on cross-mapped trials. 

This trend occurred despite the fact that while feature-based 

categories were swapped on these trials, the relational rule 

did not change. Rule-learners performance at chance on 

cross-mapped test trial suggests that they were affected by the 

featural information and did not necessarily focus purely on 

relational information. DORA’s performance also suffered. 

DORA was affected by the feature swap (Figure 8) as object 

features are present even in the relational encoding. This is an 

interesting result which suggests the reason why human 

relational categorisation might remain affected by featural 

similarity. 

The current computational study has several limitations. 

One of them being the fact that model’s LTM was empty 

prior to the simulations. An empty LTM means that DORA 

had no prior knowledge whatsoever before the task. Future 

simulations need to address this issue by pre-training DORA 

on other data containing spatial information to learn relations 

such as longer (a, b), shorter(c, d), to-the-side(e, f), and in-

the-middle(g, h).  

One of the limitations of LISA/DORA models is the lack 

of feature salience. Since feature salience affects 

performance as demonstrated in the Experiment 3 in 

Goldwater et al. (2018), this aspect needs to be added to the 

model in the future. 

In summary, the results of the simulations suggest that 

feature- and relation-based strategies that human participants 

employ on categorisation tasks might be the result of 

engaging different representational encodings—by encoding 

each stimulus purely with its features or with a relational 

structure. In addition, our findings suggest that within-

category comparisons during training enhance relational 

categorisation performance. This enhancement might be due 

to the fact that direct comparison of relationally similar 

consequent elements in blocked training facilitates 

generation of relational schemas which define a relational 

category.  
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